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Machine Learning




K-Means
Mean Shift
K-Medoids

Principal Component Analysis (PCA)

Feature Selection

Linear Discriminant Analysis (LDA)

Decision Tree
Linear Regression

Logistic Regression

Navie Bayes

SVM
K-Nearest Neighbor




Classification and Clustering in Data Analysis

O Classification (supervised learning) uses predefined classes in which objects
are assigned, while clustering (unsupervised learning) identifies similarities
between objects, which it groups according to those characteristics in common
and which differentiate them from other groups of objects. These groups are

known as "clusters".




Clustering and Classification

(P Arabie, L J Hubert, and G De Soete https://doi.org/10.1142/1930 | January 1996)
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Supervised Learning




General Approach for Building Classification Model

Tid Attribl Attrib2 Attrib3 Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 No Small 90K Yes
Training Set

Tid Attribl Attrib2 Attrib3 Class

11 No Small 55K ?

12 Yes Medium 80K ?

13 | Yes Large 110K ?

14 No Small 95K ?

15 No Large 67K ?

Test Set

Learning
algorithm
Induction
Learn
Model
Apply
Model
ﬁion

/
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Categorical
Separation

Newmail
-~
—

. ' : Learns Scans the content

Spam

' z
P
In order to predict whether a mail is spam or not, we need to first teach the machine
what a spam mail is. This is done based on a lot of spam filters - reviewing the =
. content of the mail, reviewing the mail header and so on.

Based on the content, label, and the spam score of the new incoming mail, the

algorithm decides whether it should land in the inbox or spam folder.
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Applications of Classification Algorithms

O Speech recognition

O Face recognition

O Handwriting recognition
O Biometric identification

O Document classification

O Fraud detection in finance

O Biomedicine
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ARTICLE INFO ABSTRACT

Article history: Cardiovascular disease is one of the most rampant causes of death around the world and was deemed as a
Received 11 September 2016 major illness in Middle and Old ages. Coronary artery disease, in particular, is a widespread cardiovascular
Revised 18 December 2016 malady entailing high mortality rates. Angiography is, more often than not, regarded as the best method
Accepted 12 January 2017 for the diagnosis of coronary artery disease; on the other hand, it is associated with high costs and major
side effects. Much research has, therefore, been conducted using machine learning and data mining so

Keywords: as to seek alternative modalities. Accordingly, we herein propose a highly accurate hybrid method for
Cardiovascular disease the diagnosis of coronary artery disease. As a matter of fact, the proposed method is able to increase




Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Hossein Moosaei, &
Yarifard, A. A. (2017). Computer aided decision making for heart disease
detection using hybrid neural network-Genetic algorithm. Computer methods

and programs in biomedicine, 141, 19-26.

The dataset recorded 303 patients, each of which has 54 features.




Feature type Feature name Range

Demographic Age 30-86
Weight 48-120
Sex Male, Female
BMI (Body Mass Index Kg/m?) 18-41 -
DM (Diabetes Mellitus) Yes, No
HTN (Hypertension) Yes, No
Current smoker Yes, No
Ex-smoker Yes, No
FH (Family History) Yes, No
Obesity Yes if MBI = 25, No otherwise
CRF (Chronic Renal Failure) Yes, No
CVA (Cerebrovascular Accident) Yes, No
Airway disease Yes, No
Thyroid disease Yes, No
CHF (Congestive Heart Failure) Yes, No
DLP (Dyslipidemia) Yes, No
Symptom BP (Blood Pressure mm Hg) 90-190
and PR (Pulse Rate ppm) 50-110
examination Edema Yes, No
Weak peripheral pulse Yes, No
Lung rales Yes, No
Systolic murmur Yes, No
Diastolic murmur Yes, No
Typical chest pain Yes, No
Dyspnea Yes, No
Function class 1,2 3, 4
Atypical Yes, No
MNonanginal chest pain Yes, No
Exertional chest pain Yes, No
Low Th Ang (low-Threshold angina) Yes, No
ECG Rhythm 5in, AF
Q wave Yes, No

ST elevation Yes, No




1 HB K ] Na WBC 7] Lymph - Neu. PLT
2| 158 47 141 5700 3 52 21
3| 1 a7 156 7700 18 55 165
4 135 a7 139 7400 18 60 230
5| 12 a4 142 13000 18 72 742
6 132 4 140 9200 5 9 a1
7| 158 42 141 7300 % 6 194
8 141 48 139 9400 58 R 292
9| 161 13 142 12200 2% 74 410
10 116 34 130 5100 49 50 370
1] 139 46 140 4900 5 2 380
12 145 42 142 5800 4 52 201
13 10 43 128 11000 3 66 290
14 123 43 148 11300 2% 70 380
15 143 45 120 8100 3 65 254
16 129 43 129 6400 60 19 a7
17 133 47 146 12100 30 70 280
18) 14 46 148 7800 48 50 199
19| 13 46 11 4900 % 60 194
20 131 15 140 3700 20 68 180
A 124 18 145 5300 I 50 27
2 154 43 142 6500 40 80 184
px] 10 43 143 5600 u 60 194
4| 19 16 13 7600 R 88 184
25 135 49 138 9600 28 72 190
%| 17 46 138 5800 3 60 180
L5 446 [ aan L) Af -h ans

The last column shows whether the person is healthy or sick.
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Classification Techniques I

O Neural Networks
O Random Forest
O Decision Trees

O Nearest Neighbor
O Boosted Trees

O Linear Classifiers: Logistic Regression, Naive Bayes Classifier

O Support Vector Machines
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Support Vector Machine (SVM)




What 1s a good Decision Boundary?

O Consider a two-class, linearly separable

classification problem. Construct the

R T
hyperplane 1 f (x) = sign(w" x +b)
W Xx+b=0, xeR
e © Class 2
O . ©
O to make o

T ©
wx+b>0 for y =+1 o -

T *
w x.+b <0, for y =-1 O -

Class 1 '

O Many decision boundaries! Are all decision

boundaries equally good?

L J




Examples of Bad Decision Boundaries

f (x) = sign(w' x +b)
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Optimal separating hyperplane I

O The optimal separating hyperplane




O For the hyperplane, it can be proved that the margin m is

1
i

Hence, maximizing margin is equivalent to minimizing the square of the norm

of w.




Finding the optimal decision boundary

O Let {xy, ..., x,,} be our data set and let y; € {1, —1} be the class label of x;

O The optimal decision boundary should classify all points correctly

= y,wlx;+b)>1, Vi

O The decision boundary can be found by solving the following constrained

optimization problem

.. 1 2
minimize —HWH
2

subject to y, (W' X, +b)>1 Vi




Lagrangian of the optimization problem

minimize %||W||2
subject to y, (W' x, +b)>1 Vi

O The Lagrangian is

L = %WTW+ D o (- y; (W' x; +b))
i=1

O Setting the gradient of L w.r.t. w and be to zero, we have

W"‘iai(—)’i)xi =0 = Wziaiyixi
i1 i1

iai y; =0
i=1




The Dual Problem

n
O If we substitute W= Zai YiX; into Lagrangian L, we have
i=1

1 n 1 n n
L= EZa’Iyix?Za}y}xj "‘ZQI(I_J’I(Z%J’;?’CIXI +b)J
i=1 j=1 i=1 j=1

0
1 noon n n n n

= EZZaiajyiijij +Zaf _Zaiyizajijjxi _bZ%
i=1 i=1 Jj=1 =1

ljZIHJi:ln n
~ 75 2. 2.2, @ 2.4,
i=l j=1 i=1

n
O Note that Z a;Y; =0, and the data points appear in terms of their inner
i1

product; this 1s a quadratic function of ; only.




The Dual Problem I

O The dual problem is therefore:

maxmize W (a)=) ¢ —% DYy X X
i=1

i=1,j=1

subjectto «; 20, D a;y; =0
i=1




The Dual Problem

n

minimize W (o) :%Zaiajyiijij -«

i j=1 i=1

subjectto «; 20, > a;y; =0
i=1

O This is a quadratic programming (QP) problem, and therefore a global minimum

of a; can always be found

n
O  w can be recovered by W = Zai Y; Xi, and

=1
b=y, - > ay;xx, forany o, >0
i=1

O so the decision function can be written T (X) = sign (Z a; Y XiT X +D)
i=1




The use of slack variables I

O We allow “errors” &, in classification for noisy data

Class 2




Soft Margin Hyperplane

O The use of slack variables ¢, enable the soft margin classifier
(W'x, +b>1-& y =1
Wix +b<-1+& y =-1

& 20 Vi

N\

\
0 ¢ are “slack variables” in optimization

O Note that &, = 0 if there is no error for x;

O The objective function 1 L

C : tradeoff parameter between error and margin




O The primal optimization problem becomes

minimize %||w||2 +Czn:<§i
i=1

subject to yi(wai+b_)21—§i, E >0




Dual Soft-Margin Optimization Problem

O The dual of this new constrained optimization problem is

maxmize W(a):Zai—% D oYy XX,
i=1

i=1, j=1

subject to C>¢; 20, Y ay; =0
i=1

n
O  wcan berecovered as W= Zai Y X,
=

O This is very similar to the optimization problem in the hard-margin case,

except that there 1s an upper bound C on a; now.

O Once again, a QP solver can be used to find «;




Proximal Support Vector Machine




The algorithm finds two non-parallel hyperplanes one for each class,
each hyperplane should be as close as possible to one class and as far

as possible from the other class.




The following decision rule can be used to allocate a new data point x € R™ to

the class i € {+1, — 1}

T
Vi

2 )
l[wg]|

class ¢ = argmin =1,2.
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Multisurface Proximal Support Vector Machine
Classification via Generalized Eigenvalues

Olvi L. Mangasarian and Edward W. Wild

Abstract—A new approach to support vector machine (SVYM) classification is proposed wherein each of two data sets are proximal to
one of two distinct planes that are not parallel to each other. Each plane is generated such that it is closest to one of the two data sets
and as far as possible from the other data set. Each of the two nonparallel proximal planes is obtained by a single MATLAB command
as the eigenvector corresponding to a smallest eigenvalue of a generalized eigenvalue problem. Classification by proximity to two
distinct nonlinear surfaces generated by a nonlinear kermel also leads to two simple generalized eigenvalue problems. The
effectiveness of the proposed method is demonstrated by tests on simple examples as well as on a number of public data sets. These
examples show the advantages of the proposed approach in both computation time and test set correctness.

Index Terms—Support vector machines, proximal classification, generalized eigenvalues.

1 INTRODUCTION

SUPPORT vector machines (SVMs) [23], [4], [27] constitute
the method of choice for classification problems while the
generalized eigenvalue problem [22], [5] is a simple problem
of classical linear algebra solvable by a single command of
MATLAB [17] or Scilab [24] or by using standard linear
algebra software such LAPACK [1]. In proximal support
vector classification [7], [25], [6], two parallel planes are

ronoratod crirh that oarh nlansic rlacoact b nmo nfturn A ata cote

variation and maximizing between-class variation of various
protein folds.

This work is organized as follows: In Section 2, we briefly
describe the general classification problem and our proximal
multiplane linear kernel formulation as a generalized
eigenvalue problem. In Section 3, we extend our proximal
results to a proximal multisurface nonlinear kernel formula-

- - 1 1




1AWt + bl
Y BWT b1

|BW? + b?||

mi

aw? 1 b2




We introduce the Tikhonov regularization term, a widely-utilized technique for
least squares and mathematical programming problems. This regularization
diminishes the norm of the problem variables (w, b), which determine the
proximal planes. Consequently, by introducing a nonnegative parameter 0, we

modify our problems as follows:

_ lAW? + b + 8Il(W?, bl
min [BW + bl

IBW? + b2 + 8ll(W?, bA)|
min

|AW?2 + b?||




where G and H are symmetric matrices . The objective function is known

as the Rayleigh quotient.




Theorem. (Rayleigh Quotient properties).
Let G and H be arbitrary symmetric matrices in RMTDXM+1) When H in
positive definite, the Rayleigh quotient of (7) enjoys the following properties:
1. (Boundedness) The Rayleigh quotient ranges over the interval

[/‘\1 . -’\"n+1.| as Z ranges over the unit sphere, where A; and A, .,

are the minimum and maximum eigenvalues of the generalized eigenvalue

Gz =AHz, z # 0.
2. (stationarity)
(Gz —r(z)Hz) _ 0
z'Hz
Thus, r(z) is stationary at and only at the eigenvectors of the above

Vr(z) =2

generalized eigenvalue problem.
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A classification method based on generalized
eigenvalue problems
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Binary classification refers to supervised technigues that split a set of points in two classes, with respect
to a training set of points whose membership is known for each class. Binary classification plays a
central role in the solution of many scientific, financial, engineering. medical and biological problems.
Many methods with good classification accuracy are currently available. This work shows how a
binary classification problem can be expressed in terms of a generalized eigenvalue problem. A new
regularization technique is proposed, which gives results that are comparable to other techniques in
use, in terms of classification accuracy. The advantage of this method relies in its lower computational
complexity with respect to the existing technigues based on generalized eigenvalue problems. Finally,
the method is compared with other methods using benchmark data sets.

Keywords: Classification: Binary classification; Generalized Eigenvalue problem




_ 1AW + b1+ 8l[(w, Y|
i IBWT + bl B

CIBW?2 + b2 + 8||[(WZ,b?)||
min IAW?Z + b2||

THEOREM . Consider the generalized eigenvalue problem Gx = )\Hx and the transformed
G*x = AH"*x defined by

G*=T|G—5|H, *=t2H—8zG

for each choice of scalars t,, 12, 8, and 8>, such that the 2 x 2 matrix

- T2 81
Q_((Sl tl)

is nonsingular. Then the problem G*x = AH*x has the same eigenvectors of the problem
Gx = LHx. An associated eigenvalue ).* of the transformed problem is related to an eigenvalue
A of the original problem by

o »HAY + 8
. T + SHA*




In the linear case Theorem can be applied. By settingr; =15 = 1 andS. = 8,,32 = —§,
the regularized problem becomes

|Aw — ey |12 + 8, ||Bw — ey ||?
w, r#) IBw — ey |? + & [|Aw — ey ||*

If §, and 5, are non-negative, €2 is non-degenerate. The spectrum is now shifted and inverted so
that the minimum eigenvalue of the original problem becomes the maximum of the regularized
one, and the maximum becomes the minimum eigenvalue. Choosing the eigenvectors related
to the new minimum and maximum eigenvalue, we still obtain the same ones of the original
problem.
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Sparse Proximal Support Vector Machines for feature selection in high @Cmm n
dimensional datasets
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ARTICLE INFO ABSTRACT

Keywords: Classification of High Dimension Low Sample Size (HDLSS) datasets is a challenging task in supervised learn-
Embedded feature selection ing. Such datasets are prevalent in various areas including biomedical applications and business analytics.
;z;sl;?;zaﬂm In this paper, a new embedded feature selection method for HDLSS datasets is introduced by incorporating

sparsity in Proximal Support Vector Machines (PSVMs). Our method, called Sparse Proximal Support Vector
Machines (sPSVMs), learns a sparse representation of PSVMs by first casting it as an equivalent least squares
problem and then introducing the [;-norm for sparsity. An efficient algorithm based on alternating optimiza-
tion techniques is proposed. sPSVMs remove more than 98% of features in many high dimensional datasets
without compromising on generalization performance. Stability in the feature selection process of sPSVMs
is also studied and compared with other univariate filter techniques. Additionally, sPSVMs offer the advan-
tage of interpreting the selected features in the context of the classes by inducing class-specific lacal sparsity
instead of global sparsity like other embedded methods. sSPSVMs appear to be robust with respect to data
dimensionality. Moreover, sPSVMs are able to perform feature selection and classification in one step, elimi-

Class-specific feature selection
High dimensional datasets




Classification of High Dimension Low Sample Size (HDLSS) datasets
1s a challenging task in supervised learning. Such datasets are prevalent
in various areas including biomedical applications and business
analytics. In this paper, a new embedded feature selection method for

HDLSS datasets 1s introduced by incorporating sparsity in Proximal

Support Vector Machines (PSVMs).




Theorem . Consider a real matrix X € W"*P with rank r < min(n, p). B
Let matrices V € RP*P and D € RP*P satisfy the following relation:

VIX'X)V =D
where, D = diag(c?,0%,...,02,0,0,...,0)pxp. Assume o > 0§ >

... > o. For the following optimization problem,

T o
minimize | X — Xaf |2+ uB B

o, fenp

subjectto o' =1

Bopt is proportional to vy, where v, is the eigenvector corresponding to
the largest eigenvalue 012 and € N,.




Using Theorem , we now establish that the proximal hyperplanes
P, and P, can be obtained via the least-squares approach. Let the
Cholesky decomposition of the matrices H, and G, be given by:

H, =UU,, G, =U!U, (1)

where U; and U, are upper triangular matrices.
Using (1) in GEV(H>, G,),

UlU,z = \UTU1z(U,UTH)T (UUTHU 1z = AU 2

(U UTHT(U,U Dy = Ay (2)

whereU,z =Y.
The optimal eigenvector corresponding to proximal hyperplane P,
- can be found by the following relation:

—-1A

Zope =UT'Y

where y is the eigenvector corresponding to the maximum eigen-
value of the symmetric eigenvalue problem given in (2).




By substituting X =U2U,“, ﬁ =U,B , and re-arranging
the terms, the following least-squares optimization problem is ob-
tained:

minimize ||U,U;' —U,Ba’||% + uBTG, B
o p (4)

subjectto oo =1

By Theorem , the optimal solution for ( 4) Bp: is proportional to z;,
the eigenvector corresponding to the largest eigenvalue of GEV(H,,
G:).




The following algorithm summarizes the steps needed to solve for
the optimal hyperplane P; in PSVMs using the least squares (LS) ap-
proach:

Similarly, the hyperplane P, can be obtained from Algorithm 1
with the input parameters (Hq, G>).

Algorithm 1 PSVMs-via-LS (H,, Gy).

1. Initialize B.

2. Find the upper triangular matrix U, from the Cholesky decom-
position of Gy.

3. Find « from the following relation:

- U;"H,p
U H:B

4. Find B as follows:
B = (Hy+ 1uG) 'HU '«

5. Alternate between 3 and 4 until convergence.




Sparsity is induced in PSVMs by adding an 11-norm term to
the objective function given in (4). The resulting optimization

problem 1s given by:

minirglize IUUT" —U2Ba” |12+ uB G B+ 8Bl
o,

subjectto o' =1

where the parameter § controls the level of sparsity in the coefficient
vector S.




Algorithm 2 sPSVMs (H,, G, ).

1. Initialize
2. Find U, and U, that satisfy,

G, =UU,, H,=U,U,
3. Find & from the following equation:
. U;"H,p

U Ho B

4, Solve the following LASSO regression problem to obtain S:
miniﬁmize ly — WBJI* + 51| Bl

where W and y are given by:

U U,U; '«
W: = ]
L} =[5

5. Alternate between 3 and 4 until convergence.




Twin Support Vector Machines (TWSVM)
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Twin Support Vector Machines
for Pattern Classification
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R. Khemchandani, Student Member, IEEE,
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Suresh Chandra

Abstract—We propose Twin SVM, a binary SVM classifier that determines two
nonparallel planes by solving two related SVM-type problems, each of which is
smaller than in a conventional SVM. The Twin SVM formulation is in the spirit of
proximal SVMs via generalized eigenvalues. On several benchmark data sets,
Twin SVM is not only fast, but shows good generalization. Twin SVM is also useful
for automatically discovering two-dimensional projections of the data.




Standard SVM :

1
min—w
wr 2

subjectto (Aw —ey) +r = e,
(Bw —ey) —r < —e,
r = 0.

Tw 4+ velr,




Why TWSVM?

This quadratic programming problem (QPP) is expensive to solve

for large dimensions because all data points appear in the

constraints.




How does it works ? :

Instead of solving one large QPP, TWSVM solve two smaller QPP
each of them has the formulation of standard SVM except that not all

data patterns appear in the constraint at the same time.

The algorithm finds two non-parallel hyperplanes one for each class,

each hyperplane should be as close as possible to one class and as far

as possible from the other class.




'@ g




Linear Classifier

TWSVM is obtained by solving the following pair of QPPs:

1
(TWSVM1) M{)\/Igur)z ' §(Aw(l) + € b(l))T(Aw(l) + e b))+ clegTq

subject to  — (Bw'V + V) +q> ey, q>0,

(TWSVM2) Min l(Bw(z) + egb(z))T(Bw(z) + e2b®)+ coe”
w(® b, ¢ 2 14

subject to (Aw'® + elb(“’)) +q>e, q>0,




The first term of the objective function represents the sum of square distance
from the hyperplane to each pattern of one class, therefore minimizing it

keeps the hyperplane close to the patterns of one class.

The constraints require the hyper plane to be far from the other class patterns

at least with distance 1.

The second term of the objective function minimize the sum of error

variables to minimize miss classification of patterns belongs to other class.




The Wolfe dual can be obtain as follows

max el a —laTG(HTH)‘lGTa, G=[B e] and H=[A4 e]
(04
subjectto 0 < a < ¢q

u=—(HTH)"1GTa where u=[w!, b.]".

1
CIx‘naX e'lry _E)/TP(QTQ)_lpT)/’ P = [A el] and Q = [B ez]

subjectto 0 <y < ¢y

v=(Q"Q)"'PTy where v=[w;, b]"




Inference with the Universum
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Léon Bottou
Vladimir Vapnik
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Abstract

In this paper we study a new framework
introduced by Vapnik (1998) and Vapnik
(2006) that is an alternative capacity con-
cept to the large margin approach. In the
particular case of binary classification, we are
given a set of labeled examples, and a collec-
tion of "non-examples” that do not beloneg

LEON@QBOTTOU.ORG
VLAD@NEC-LABS.COM

not to belong to either class
s Ty z* € R? (1)

The set U is called the Universum. It contains data
that belongs to the same domain as the problem of
interest and is expected to represent meaningful in-
formation related to the pattern recognition task at

hand.




Figure 1. From left to right, the Hinge loss and the &-
insensitive and Lo losses. The s-insensitive loss 1s a linear
combination Ult] = H_.[t]| + H_.|—t] of two Hinge loss
functions H_.[t] = max{0,f — =}. Here it is shown with
£ = 0.25. The L2 loss is a simple quadratic function.
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Twin support vector machine with universum
data (UTSVM)
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ARTICLE INEFO ABSTRACT

Article history: The Universum, which is defined as the sample not belonging to either class of the classification problem

Received 30 May 2012 of interest, has been proved to be helpful in supervised learning. In this work, we designed a new

Received in revised form 20 August 2012 Twin Support Vector Machine with Universum (called 4-TSVM), which can utilize Universum data to

Accepted 3 September 2012 improve the classification performance of TSVM. Unlike £-SVM, in -TSVM, Universum data are located
in a nonparallel insensitive loss tube by using two Hinge Loss functions, which can exploit these prior

EE:;'}::;&U“ knowledge embedded in Universum data more flexible. Empirical experiments demonstrate that {(-TSVM

Twin support vector machine can directly improve the classification accuracy of standard TSVM that use the labeled data alone and is
Universam superior to £-SVM in most cases.
© 2012 Elsevier Ltd. All rights reserved.
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Support vector machine with Universum data

(USVM)
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Twin support vector machine with Universum data

(UTSVM)




Twin bounded support vector machine

with universum data (UTBSVM)




® Training data T :

T=TUU,

T :{(Xliyl)i'"! (Xn’yn)}E (Rmx{il})n’
U={x,..x}

Here, |J € RY"™ denotes the universum class, and each row of the

matrix U represents an universum sample.




OLearning the UTBSVM can be formulated as an optimization:

min - ZfAw ey + el + 2w + b2+ Dty
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Twin Support Vector Machines (TSVM) and

Sparse Optimization for Feature Selection
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ARTICLE INFO ABSTRACT

Keywords: In data analysis, when attempting to solve classification problems, we may encounter a large number of
Universum features. However, not all features are relevant for the current classification, and including irrelevant features
Twin bounded support vector machine can occasionally degrade learning performance. As a result, selecting the most relevant features is critical,

Least-squares twin bounded support vector
machine with Uiversum

p-norm

Feature selection

especially for high-dimensional data sets in classification problems. Feature selection is an effective method
for resolving this issue. It attempts to represent the original data by extracting relevant features containing
useful information. In this research, our aim is to propose a p-norm least-squares Universum twin bounded
support vector machine (LS,-UTBSVM) to perform classification and feature selection at the same time. Indeed,
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We reformulate problems (1) and (2) to the following unconstrainted

optimization problems

= ¥ . G 3 3
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Here, we find lower bounds for the absolute values of non-zero components of

the optimal solution. More precisely, we find such lower and upper bounds that

each component of the optimal solution lying inside the bounds must be 0.

Theorem. Let (W], b; ) be a local optimal solution of problem (1). Then wy;

= 0 if wy; € (=1}, I;), where

C 2—p
5p(1-p)
el AT Ae; + c,el BTBe; + cy el UTUe;p

e; is the ith column of the identity matrix, A is a submatrix of A composed of

the columns corresponding to the non-zero components of wy and, B and U can

be described analogously.




Theorem. Assume (W5, b; ) is a local optimal solution of problem (2). If w;

€ (—E;, E;), where '

1

c 2-p

. 5p(1—p) 1o
.= — pom—— ~ o~ ) L= 1,4,..,N,
" |efBTBe; + cief AT Ae; + ciel UTUe;

Then w,; = 0.




Not that the terms ”W1 ”g and ”W2 ”223 in the objective functions

not only are non-smooth, but also are the sources of non-convexity for

problems (1) and (2) and also (3) and (4). So, it is not an easy task to

obtain the global solutions of these problems. To resolve the issue of

non-smooth terms, we approximate ”W1 ”p

= Yizq Wy |P by 2T 1(|W1z|+50)

and”Wz”g = Yic1wail? vy X, (lwy; | + 80)

where €3>0 is a very small number. Therefor, the problems (3) and

(4) are differentiable.




But, because of the terms Y, (|wy;| + &) and I, (Jwy;| + &0)F for 0 < p

< 1, the problems (3) and (4) are still non-convex. To overcome this defect, the .

non-convex terms Yo (|wy;| + &9)° and Y7 (Jlwy;| + £0)F are

~ 2 ~
replaced by the convex terms ||B®w;||5 and ” BRW, ”2, where B and f can be

adjusted to fit the approximation.




So, we obtain the convex programming problems '
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The problems (5) and (6) can be solved by solving a systems of equations.




Twin Support Vector Machines (TSVM) and

Multi-task learning
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Abstract

In recent years, multi-task learning (MTL) has become a popular field in machine learn-
ing and has a key role in various domains. Sharing knowledge across tasks in MTL can
improve the performance of learning algorithms and enhance their generalization capability.
A new approach called the multi-task least squares twin support vector machine (MTLS-
TSVM) was recently proposed as a least squares variant of the direct multi-task twin support
vector machine (DMTSVM). Unlike DMTSVM, which solves two quadratic programming
problems, MTLS-TSVM solves two linear systems of equations, resulting in a reduced com-

putational time. In this paper, we propose an enhanced version of MTLS-TSVM called the
imnraoved mnlti-tack least conares fwin ennnort vector machine (TMTT S-TSVMY. TMTT S-
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ARTICLE INFO ABSTRACT
Article history: Imbalanced datasets are prominent in real-world problems. In such problems, the data samples in one
Received 8 March 2022 class are significantly higher than in the other classes, even though the other classes might be more

Revised and accepted 4 October 2022

L d important. The standard classification algorithms may classify all the data into the majority class, and
Available online 15 October 2022

this is a significant drawback of most standard learning algorithms, so imbalanced datasets need to be

Keywords: handled carefully. One of the traditional algorithms, twin support vector machines (TSVM), performed
Universum well on balanced data classification but poorly on imbalanced datasets classification. In order to
Class-imbalanced improve the TSVM algorithm's classification ability for imbalanced datasets, recently, driven by the
Twin support vector machine universum twin support vector machine (UTSVM), a reduced universum twin support vector machine

Universum twin support vector machine

for class imbalance learning (RUTSVM) was proposed. The dual problem and finding classifiers involve
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Abstract

In this paper, we propose two efficient approaches of twin support vector machines
(TWSVM). The first approach is to reformulate the TWSVM formulation by introducing
L, and L., norms in the objective functions, and convert into linear programming prob-
lems termed as LTWSVM for binary classification. The second approach is to solve the
primal TWSVM, and convert into completely unconstrained minimization problem. Since
the objective function is convex, piecewise quadratic but not twice differentiable, we present
an efficient algorithm using the generalized Newton’s method termed as GTWSVM. Com-
putational comparisons of the proposed LTWSVM and GTWSVM on synthetic and several
real-world benchmark datasets exhibits significantly better performance with remarkably less
computational time in comparison to relevant baseline methods.

Keywords Support vector machines - Twin support vector machines - Linear programming -
Unconstrained minimization problem - Generalized Newton-Armijo method




Robust TVSVM

Wang, X., Pardalos, P.M. A Survey of Support Vector Machines with
Uncertainties. Ann. Data. Sci. 1,293-309 (2014). https://doi.org/10.1007/s40745-
014-0022-8
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Robust twin support vector machine for pattern classification
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ARTICLE INFO ABSTRACT
Article history: In this paper, we proposed a new robust twin support vector machine (called R-TWSVM) via second
Received 27 December 2011 order cone programming formulations for classification, which can deal with data with measurement
Received in revised form noise efficiently. Preliminary experiments confirm the robustness of the proposed method and its
ii J;;":jg;zjune 012 superiority to the traditional robust SVM in both computation time and classification accuracy.
Available oniine 4 July 2012 Remarkably, since there are only inner products about inputs in our dual problems, this makes us
apply kernel trick directly for nonlinear cases. Simultaneously we does not need to solve the extra
Keywords: inverse of matrices, which is totally different with existing TWSVMs. In addition, we also show that the

Classification

Twin support vector machine
Second order cone programming
Robust

TWSVMs are the special case of our robust model and simultaneously give a new dual form of TWSVM
by degenerating R-TWSVM, which successfully overcomes the existing shortcomings of TWSVM.
© 2012 Elsevier Ltd. All rights reserved.
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Abstract Twin support vector machine (TSVM) is a
novel machine learning algorithm, which aims at finding
two nonparallel planes for each class. In order to do so, one
needs to resolve a pair of smaller-sized quadratic pro-
gramming problems rather than a single large one. Clas-
sical TSVM is proposed for the binary classification
problem. However, multi-class classification problem is
often met in our real world. For this problem, a new multi-

learning technique. Compared with other machine learning
approaches like artificial neural networks [2], SVM has
many advantages. First, SVM solves a QPP, assuring that
once an optimal solution is obtained, it is the unique
(global) solution. Second, SVM derives a sparse and robust
solution by maximizing the margin between the two clas-
ses. Third, SVM implements the structural risk minimiza-
tion principle rather than the empirical risk minimization




Twin-KSVC could be considered as a novel multi-class categorization
depending on TWSVM (Xu et al., 2013). The approach employs ternary
outputs of {-1, 0,+1} to assess all of the training data in a ‘‘1-versus-1-
versus-rest’” framework. Two non-parallel hyperplanes for classes +1

and -1 are created by addressing two quadratic programming problems,

and the remaining sample data sets are labeled as 0.




:{Tw{l‘:- h“]={]' xTw“lh“]:_]

Fig. 3 Illustration of Twin-KSVC




demonstration of the Twin-KSVC technique is shown in Fig. 3 In the
Twin-KSVC, two non-parallel hyperplanes are searched:

xTw,+b;, =0, xTw,+b,=0.

Assuming three data matrices, A, ., B, «, and C,, ., with class labels
+1, —1 and O correspondingly, is identical to the preceding subsection.
Solving the subsequent pair of QPPs yields the Twin-KSVC classifiers:

. 1
min > |Aw, + e, by ||* + cle;—ql + cze;-qz,

wy.by.qy.92
subject to  —(Bw, + e;b,) + q, = e>. (1)
—(Cw, +e3b)) + q; = e3(1 —¢€),
q = Ov 9> = Ov
and
. 1 2 T T
Sllbj&Ct to AW2 + elbz + g3 = ey, (2)

C"Jz + e3b2 + qs 2 83(1 — 6'),
g3 20, g4 20.




where ¢, ¢,, ¢35, ¢4 2 0 considers as regularization parameters, e, e,, €3
and e, are vectors of one’s of proper dimension, ¢,, ¢,, ¢3, and g, are
slack variables, and ¢ is a parameter with a positive value.

For Twin-KSVC and NTW-KSVC linear versions:

+1, xlw,+b >-1+e¢,
flx)=1-1, x;f'"w1+|52 <1 —e,
0, otherwise.
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ARTICLE INFO ABSTRACT

Keywords: Multi-class classification is an important problem in machine learning, which often occurs in the real world
Multi-class classification and is an ongoing research issue. Support vector classification-regression machine for k-class classification
mxmr machine (K-SVCR) and twin k-class support vector classification (Twin-KSVC) are two novel machine learning methods

for multi-class classification problems. This paper presents novel methods to solve the primal problems of

K-SVER K-SVCR and Twin-KSVC, known as NK-SVCR and NTW-KSVC, respectively. The proposed methods evaluate all

Twin-KSVC

Newton’s method training data into a “1-versus-1-versus-rest” structure, so it generates ternary outputs {—1.0,+1}. The primal
problems are reformulated as unconstrained optimization problems so that the objective functions are only
once differentiable, not twice, therefore an extension of the Newton-Armijo algorithm is adopted for finding
their solution. To test the efficiency and validity of the proposed methods, we compare the classification
accuracy and learning time of these methods with K-SVCR and Twin-KSVC on the United States Postal Service
(USPS) handwriting digital data sets and several University of California Irvine (UCI) benchmark data sets.




Twin-KSVC problems (1) and (2) :an be
rewritten as follows:

.|
min  — [T}y, I* + ¢llg I*+ 6 lg, I, -
.90 2 3)
subject to Sy +e <q,
Sy +es(l -€) < g,
41,42 2 0.
o ) ) )
min =||THop|" +c¢ “+c %
M IT551I” + e3llg3 1™ + ¢4 llgsl
subjectto Sy, +e; < s, (4)

Sy +ey(l =€) < gy,
G394 2 0.

where T, = [A¢], S, = [B &), S, = [C ), and y; = [w; b;).
Analogously, T, = (B e,), S; = [-A -¢], S; = [-" - e, and
y» = [w,: by). For the optimal solution of problem (1) we have
g = (515, +e), and g, = (S,), +e5(1 =€), (Lee and mangasarian,

2001b; Mangasarian and Musicant, 1999). [




I o we can subsiue |

them in the objective function. Also, ¢; and g, can be substituted in
a similar way. Then, problems @) and @)) will be equivalent to the
following unconstrained minimization problems:

i = i
min y;(y)) = min 3Ty, 17 + ¢, (S, 3y + e2), 11
+ 6 ll(Syy + es(1 = ), |12, )
and

) |
iR w(y) = ol IT535 11 + c3ll(S3y2 + €))7

+ ¢4 lI(Syys + e3(1 =€), 1% (6)
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ARTICLE INFO ABSTRACT
Article history: In the realm of multi-class classification, the twin K-class support vector classification (Twin-KSVC)
Received 25 November 2022 generates ternary outputs {—1, 0, +1} by evaluating all training data in a “1-versus-1-versus-rest”

Received in revised form 22 June 2023
Accepted 26 July 2023
Available online 1 August 2023

structure. Recently, inspired by the least-squares version of Twin-KSVC and Twin-KSVC, a new multi-
class classifier called improvements on least-squares twin multi-class classification support vector
machine (ILSTKSVC) has been proposed. In this method, the concept of structural risk minimization is

Keywords: achieved by incorporating a regularization term in addition to the minimization of empirical risk. Twin-
Multi-class classification KSVC and its improvements have an influence on classification accuracy. Another aspect influencing
Twin k-class support vector classification classification accuracy is feature selection, which is a critical stage in machine learning, especially
Least-squares when working with high-dimensional datasets. However, most prior studies have not addressed this
Cardinality-constrained optimization crucial aspect. In this study, motivated by ILSTKSVC and the cardinality-constrained optimization

problem JE I RN S [N PT P IC R AU ORS00 7§ P P




Exploring Novel Methods Inspired by

Twin Support Vector Machines
(TSVM)
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Abstract Motivated by the support vector data descrip-
tion, a classical one-class support vector machine, and the
twin support vector machine classifier, this paper formu-
lates a twin support vector hypersphere (TSVH) classifier,
a novel binary support vector machine (SVM) classifier
that determines a pair of hyperspheres by solving two
related SVM-type quadratic programming problems, each

of which is smaller than that of a conventional SVM, which
meang that thic TSVH ic mare afficient than the clacciral

powerful method in machine learning algorithms. Within a
few years after its introduction, the SVM has already out-
performed most other systems in a wide variety of appli-
cations. These include a wide spectrum of research areas,
ranging from pattern recognition [5, 6], text categorization
[7], biomedicine [8], brain—computer interface [9], and
financial applications [10].

The theory of SVM proposed by Vapnik et al. is based on

the stretural rick minimizatiom (SRAM) nrinecinle 1141 In
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E ABSTRACT In this paper, a twin hyper-ellipsoidal support vector machine (TESVM) for binary classifica-
tion of data is presented. Similar to twin support SVM(TWSVM) and twin hypersphere SVM (THSVM),
as in the literature, our proposed method finds two hyper-ellipsoidals by solving two related SVM-type
quadratic programming problem (QPPs), each of which is smaller than that of the classical SVM, causing
it to achieve higher speed. The main idea of this paper is to employ Mahalanobis distance-based kernels for

two classes of data in the THSVM algorithm to improve its generalization performance. Since the kernel
need in SVM TWEVM and THSVM i< haced nn Fuclidean distance it ic acenimed that the data nninte have
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ARTICLE INFO ABSTRACT
Article history: The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the
Received 17 April 2009 minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for

Received in revised form 1 July 2009

all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor
Accepted 6 July 2009 & p pap prop pp €g ( ) gr

that determines a pair of e-insensitive up- and down-bound functions by solving two related SVM-type
problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of
Machine learning Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several
Support vector machine artiﬁcia_l an.d benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good
Regression generalization performance.

Nonparallel planes © 2009 Elsevier Ltd. All rights reserved.
e-insensitive bound

Keywords:




Nonlinear separable problems

This is a hyperplane!
(in some space)




Non-linear SVMs: Feature spaces




Kernel Methods
for Pattern Analysis




Challenging issues with TSVM

[
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"Exploring Innovative Approaches for Data Separation”

"Introducing an Efficient Optimization Model for Enhanced Performance"
"Addressing Existing Challenges with Novel Solutions"

"Extending Binary Classification Methods to Multi-class Classification"
"Utilizing Sparse Solutions for Feature Selection"

"Dealing with Unbalanced Data and Structural Datasets"

"Tackling Multi-label Classification and Semi-supervised Learning"

"Handling Massive Datasets with TSVM"




Many Models of SVM

Wang, X., Pardalos, P.M. A Survey of Support Vector
Machines with Uncertainties. Ann. Data. Sci. 1,293-309
(2014). https://doi.org/10.1007/s40745-014-0022-8
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Resources: Datasets

OUCI Repository:

http://www.ics.uci.edu/~mlearn/MLRepository.html

OUCI KDD Archive:

http://kdd.ics.uci.edu/summary.data.application.html

O Statlib: http:/lib.stat.cmu.edu/

ODelve: http://www.cs.utoronto.ca/~delve/
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http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/~delve/

Journals

O Journal of Machine Learning Research Machine Learning
O IEEE Transactions on Neural Networks

O IEEE Transactions on Pattern Analysis and Machine

Intelligence
O Annals of Statistics

O Journal of the American Statistical Association

o ...




Resources: Conferences

O International Conference on the Dynamics of Information Systems (DI

OlInternational Conference on Machine Learning (ICML)

OEuropean Conference on Machine Learning (ECML)

ONeural Information Processing Systems (NIPS)

Olnternational Joint Conference on Artificial Intelligence (IJCAI)

OACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD)

OIEEE Int. Conf. on Data Mining (ICDM)



https://link.springer.com/book/10.1007/978-3-031-50320-7




Appendix




Optimization
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Optimization Problem

» Finding the minimizer of a function subject to constraints:

minignize folz)
s.t. filx) <0, i=1{1,...,k}
hj[ﬂ':} =0, j= {11“*1”'




Some different types
of

optimization problems?




Nonlinear
Least Squares

Nonlinear Equations

/ r
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Optimization Taxonomy

._.‘

Multiobjective Optimization

Stochastic Programming

Robust Optimization

Discrete

/

N

Combinatorial
Optimization

S

Nondifferentiable
Optimization

Global Optimization

Notlinear Programming

Network Optimization

Bound Constrained

Linearly Constrained

Semidefinite Programming

i
Second-Order
Cone Programming

Quadratically-Constrained
Quadratic Programming

N

\

L\

Mathematical Programs
with Equilibrium Constraints

Mixed Integer
Nonlingar Programming

Derivative-Free

Optimization

Quadratic
Programming

Linear
Programming

r
Complementarity
Problems




Applications of Optimization?




> Transportation

> Resource Allocation
> Portfolio Management
> Economics

> Manufacturing System

> Medical Science

> Data Mining




Dptimality Conditions




Optimality Criteria )

OBig question: How do we know that we have found the “optimum”

for min f(x)?

Answer: Test the solution for the “necessary and sufficient conditions”
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Optimality Conditions — Unconstrained Case

O Let x* be the point that we think is the minimum for f(x)

Necessary condition (for optimality):

Vix*) =0

O A point that satisfies the necessary condition is a stationary point It can be

a minimum, maximum, or saddle point

O How do we know that we have a minimum?

O Answer: Sufficiency Condition:

The sufficient conditions for x* to be a strict local minimum are:
VE(x*) = 0

V2f(x*) is positive definite




Constrained Case — KKT Conditions

OTo proof a claim of optimality in constrained minimization (or

maximization), we have to check the found point with respect to

the (Karesh) Kuhn Tucker conditions.

OKuhn and Tucker extended the Lagrangian theory to include the
general classical single-objective nonlinear programming problem:
minimize f(x)

Subject to gj(x) >0forj=1,2,..,]

h (x)=0 fork=1,2, .., K

X = (X]5 Xyy erns X))

s AN
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Necessary KKT Conditions

For the problem:
Min f(x)
s.t. g(x) <0

(n variables, m constraints)

The necessary conditions are:
Vi(x) + Zu; g;,(x) = 0 (optimality)
g;(x)<0 fori=1, 2, .., m (feasibility)
u; g;(x) = O0fori=1,2, .., m(complementary slackness condition)
;=0 fori=1, 2, ..., m (non-negativity)

Note that the first condition gives n equations.




124

Necessary KKT Conditions (General Case)

OFor general case (n variables, M Inequalities, L equalities):
Min f(x)
s.t.
9ions0 fori1=1,2,...M
hi(x) =0 for j=1,2,..,L

O1n all this, the assumption is that Vg (x*) for j belonging to active
constraints and Vh, (x*) fork=1, . K are linearly independent

OThe necessary conditions are:
V (x) + > uVg(x)+ > /1j th(X) =0 (optimality)

g(x) <0 fori=1,2, ..., M (feasibility)

hj(x) =0 forj=1,2, ..., L (feasibility)

hog(x)=0 fori=1,2,..,M (complementary slackness condition)
1=0 fori=1,2, .., M (non-negativity)

(Note: /1j is unrestricted in sign)
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Restating the Optimization Problem

OKuhn Tucker Optimization Problem: Find vectors XNx1)s H1xm) and
A (1xk) that satisty:

VE(x) + Z p; Vgi(x) + Z & Vh(x) = O (optimality)

g(x) <0  fori=1, 2, ..., M (feasibility)

hi(x) =0 forj=1, 2, ..., L (feasibility)

u g;00= 0 fori=1,2, .. M (complementary slackness condition)
u; >0 for i=1, 2, ..., M (non-negativity)

> If x* is an optimal solution to NLP, then there exists a (u*, A*) such
that (x*, u*, A*) solves the Kuhn—Tucker problem.

> Above equations not only give the necessary conditions for optimality,

but also provide a way of finding the optimal point.




Limitations

O Necessity theorem helps identify points that are not optimal. A point is

not optimal if it does not satisfy the Kuhn—Tucker conditions.

O On the other hand, not all points that satisfy the Kuhn-Tucker

conditions are optimal points.

O The Kuhn—Tucker sufficiency theorem gives conditions under which a

point becomes an optimal solution to a single-objective NLP.




Sufficiency Condition

O Sufficient conditions that a point x* is a strict local minimum of the NLP

problem, where f, g and hk are twice differentiable functions are that
1) The necessary KKT conditions are met.

2) The Hessian matrix V2L(x*) = V2f(xx) + Zp,V2g,(xx)
+ Z1;V2h,(xx) 1s positive definite on a subspace of R" as defined
by the condition:

yT V2L(x*) y 2 0 1s met for every vector Y,y satisfying:

Vg;(x*)y <0 for j belonging to |, = {] | g;(x*) =0, y* > 0}

(active constraints)

Vh (x*)y =0 fork=1,..K y 0
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KKT Sufficiency Theorem (Special Case)

O Consider the classical single objective NLP problem.
minimize f(x)
Subject to gi(x) <0 forj=1,2,..,J
h(x) =0 fork=1,2, .. K

O Let the objective function f(x) be convex, the inequality constraints gj(x)

be all convex functions for j =1, ..., J, and the equality constraints hk(x)
fork =1, ..., K be linear.

OIf this is true, then the necessary KK T conditions are also sufficient.

O Therefore, in this case, if there exists a solution x* that satisfies the KKT
necessary conditions, then x* is an optimal solution to the NLP problem.

O1n fact, it is a global optimum.




Dual Problem




Generalized Lagrangian Function

O Consider the general (primal) optimization problem

minimize f(w)
subjectto g.(w)< 0,i=1---,k
hj(W) - Ol J =1’”';m
where the functions f,g;,1=1---,k,and h.,i=1,---,mare

defined on a domain £). The generalized Lagrangian was defined as

L(Waﬂ)—f(W)+Za9(W)+Zﬁ i (w)
—f(w)+a g(w)+ 8’ h(w)




Dual Problem and Strong Duality Theorem

OGiven the primal optimization problem, the dual problem of it was

defined as

maximize G(o,p) = inf L(w,a,S)

we()

subject to  a>0

OStrong Duality Theorem: Given the primal optimization problem,
where the domain € is convex and the constraints 9; @nd h; are

affine functions. Then the optimum of the primal problem occurs at

the same values as the optimum of the dual problem .
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Jose C. Principe:

Cycles in Neural Network Research

* How to manage expectations?

Deep Learning

_ LeCun, Bengio, Hintor
Multilayer Perceptrons 2015

Rumelhart, Hinton, Williams
1986

Rosenblatt
Perceptron
1956

1992 Data availability

) Computing power
Backpropagation
M-P Neuron 1981

1943




