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Classification and Clustering in Data Analysis

Classification (supervised learning) uses predefined classes in which objects 
are assigned, while clustering (unsupervised learning) identifies similarities 
between objects, which it groups according to those characteristics in common 
and which differentiate them from other groups of objects. These groups are 
known as "clusters".



(P Arabie, L J Hubert, and G De Soete https://doi.org/10.1142/1930 | January 1996)

Clustering and Classification

https://www.worldscientific.com/author/Arabie,+P
https://www.worldscientific.com/author/Hubert,+L+J
https://www.worldscientific.com/author/de+Soete,+G
https://doi.org/10.1142/1930


Supervised Learning
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General Approach for Building Classification Model

Apply 

Model

Induction

Deduction

Learn 

Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning

algorithm

Training Set
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In order to predict whether a mail is spam or not, we need to first teach the machine 
what a spam mail is. This is done based on a lot of spam filters - reviewing the 
content of the mail, reviewing the mail header and so on.
Based on the content, label, and the spam score of the new incoming mail, the 
algorithm decides whether it should land in the inbox or spam folder.



Applications of Classification Algorithms

Speech recognition
Face recognition
Handwriting recognition
Biometric identification
Document classification
Fraud detection in finance
Biomedicine

2024/4/3010
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The dataset recorded 303 patients, each of which has 54 features.
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The last column shows whether the person is healthy or sick.
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Classification Techniques
Neural Networks
Random Forest
Decision Trees
Nearest Neighbor
Boosted Trees
Linear Classifiers: Logistic Regression, Naïve Bayes Classifier
Support Vector Machines
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Support Vector Machine (SVM)
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What is a good Decision Boundary?
Consider a two-class, linearly separable 

classification problem. Construct the 
hyperplane 

 to make

Many decision boundaries! Are all decision 
boundaries equally good?
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Examples of Bad Decision Boundaries
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Optimal separating hyperplane 
The optimal separating hyperplane
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For the  hyperplane, it can be proved that the margin m is 

Hence, maximizing margin is equivalent to minimizing the square of the norm 
of  𝑤.

2

1
m

w
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Finding the optimal decision boundary
Let {𝑥1, … , 𝑥𝑛} be our data set and let 𝑦𝑖 ∈ 1, −1 be the class label of 𝑥𝑖

The optimal decision boundary should classify all points correctly 

⟹ 𝑦𝑖 𝑤
𝑇𝑥𝑖 + b ≥ 1, ∀ 𝑖

The decision boundary can be found by solving the following constrained 
optimization problem

ibxwytosubject

wminimize

i

T

i + 1)(
2

1 2

24



Lagrangian of the optimization problem

The Lagrangian is

Setting the gradient of  𝐿 w.r.t. 𝑤 and be to zero, we have
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The Dual Problem
 If we substitute                          into Lagrangian 𝐿, we have 

Note that                     , and the data points appear in terms of their inner 

product; this is a quadratic function of 𝛼𝑖 only. 
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The Dual Problem
The dual problem is therefore:
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The Dual Problem

This is a quadratic programming (QP) problem, and therefore a global minimum 
of 𝛼𝑖 can always be found

 𝑤 can be recovered by                          , and  

 so the decision function can be written
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The use of slack variables
We allow “errors” 𝜉𝑖 in classification for noisy data 
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Soft Margin Hyperplane
The use of  slack variables 𝜉𝑖 enable the soft margin classifier

 𝜉𝑖 are “slack variables” in optimization
Note that 𝜉𝑖 = 0 if there is no error for 𝑥𝑖

The objective function

C : tradeoff parameter between error and margin
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The primal optimization problem becomes
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Dual Soft-Margin Optimization Problem

The dual of this new constrained optimization problem is

 𝑤 can be recovered as 

This is very similar to the optimization problem in the hard-margin case, 
except that there is an upper bound C on 𝛼𝑖 now. 

Once again, a QP solver can be used to find 𝛼𝑖

1 1, 1

1

1
( )

2

0, 0

n n
T

i i j i j i j

i i j

n

i i i

i

maxmize W y y x x

subje Cct to y

   

 

= = =

=

=



−

 =

 




=

=
n

i

iii xyw
1



32



Proximal Support Vector Machine 
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A

B

The algorithm finds two non-parallel hyperplanes one for each class, 
each hyperplane should be as close as possible to one class and as far 
as possible from the other class.

34



The following decision rule can be used to allocate a new data point 𝑥 ∈ ℝ𝑛 to
the class 𝑖 ∈ +1, − 1

class 

35



36



37



We introduce the Tikhonov regularization term, a widely-utilized technique for 
least squares and mathematical programming problems. This regularization 
diminishes the norm of the problem variables (w, b), which determine the 
proximal planes. Consequently, by introducing a nonnegative parameter δ, we 
modify our problems as follows:
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where G and H are symmetric matrices . The objective function is known 
as the Rayleigh quotient.
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Theorem. (Rayleigh Quotient properties).
Let G and H be arbitrary symmetric matrices in 𝑅(𝑛+1)×(𝑛+1). When H in 
positive definite, the Rayleigh quotient of  (7) enjoys the following properties:
1. (Boundedness) The Rayleigh quotient ranges over the interval                                    

as 𝑧 ranges over the  unit sphere, where  
are the minimum and maximum eigenvalues of the generalized eigenvalue

𝐺𝑧 = 𝜆𝐻𝑧, 𝑧 ≠ 0.

2. (stationarity) 

∇𝑟 𝑧 = 2
(𝐺𝑧 − 𝑟 𝑧 𝐻𝑧)

𝑧′𝐻𝑧
= 0

Thus, r(z) is stationary at and only at the eigenvectors of the above 
generalized eigenvalue problem.
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Classification of High Dimension Low Sample Size (HDLSS) datasets 
is a challenging task in supervised learning. Such datasets are prevalent 
in various areas including biomedical applications and business 
analytics. In this paper, a new embedded feature selection method for 
HDLSS datasets is introduced by incorporating sparsity in Proximal 
Support Vector Machines (PSVMs).
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Sparsity is induced in PSVMs by adding an l1-norm term to 
the objective function given in (4). The resulting optimization 
problem is given by:
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Twin Support Vector Machines (TWSVM)
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Standard SVM :

min
𝑤,𝑟

1

2
𝑤𝑇𝑤 + 𝜈𝑒𝑇𝑟,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐴𝑤 − 𝑒𝛾) + 𝑟 ≥ 𝑒,
(𝐵𝑤 − 𝑒𝛾) − 𝑟 ≤ −𝑒,

𝑟 ≥ 0.
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Why TWSVM?
This quadratic programming problem (QPP) is expensive to solve 
for large dimensions because all data points appear in the 
constraints.
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How does it works ?

Instead of solving one large QPP, TWSVM solve two smaller QPP 
each of them has the formulation of standard SVM except that not all 
data patterns appear in the constraint at the same time.

The algorithm finds two non-parallel hyperplanes one for each class, 
each hyperplane should be as close as possible to one class and as far 
as possible from the other class.
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Linear Classifier
TWSVM is obtained by solving the following pair of QPPs:
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The first term of the objective function represents the sum of square distance 
from the hyperplane to each pattern of one class, therefore minimizing it 
keeps the hyperplane close to the patterns of one class.

The constraints require the hyper plane to be far from the other class patterns 
at least with distance 1.

The second term of the objective function minimize the sum of error 
variables to minimize miss classification of patterns belongs to other class.
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The Wolfe dual can be obtain as follows

max
𝛼

𝑒2
𝑇𝛼 −

1

2
𝛼𝑇𝐺(𝐻𝑇𝐻)−1𝐺𝑇𝛼,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝛼 ≤ 𝑐1

𝑢 = − 𝐻𝑇𝐻 −1𝐺𝑇𝛼 𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑤1
𝑇, 𝑏1

𝑇 .

max
𝛼

𝑒1
𝑇𝛾 −

1

2
𝛾𝑇𝑃(𝑄

𝑇𝑄)−1𝑃𝑇𝛾,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝛾 ≤ 𝑐2

𝑣 = 𝑄𝑇𝑄 −1𝑃𝑇𝛾 𝑤ℎ𝑒𝑟𝑒 𝑣 = 𝑤2
𝑇 , 𝑏2

𝑇

ሿ𝐺 = [𝐵 𝑒2ሿ 𝑎𝑛𝑑 𝐻 = [𝐴 𝑒1

ሿ𝑃 = [𝐴 𝑒1ሿ 𝑎𝑛𝑑 𝑄 = [𝐵 𝑒2
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Twin support vector machine with universum
data (UTSVM)
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Support vector machine with Universum data 
(USVM)



Twin support vector machine with Universum data 
(UTSVM)
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Twin bounded support vector machine 
with universum data (UTBSVM)

67



• Training data ෨𝑇 :

Here,                   denotes  the universum class, and each  row of the 
matrix U represents an universum sample.

,T T U=

1 1

* *

1

{(x , y ),..., (x , y )} (R { 1}) ,

{x ,..., x }.

m n

n n
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u mU R 
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Learning the UTBSVM can be formulated as an optimization:
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Twin Support Vector Machines (TSVM) and 
Sparse Optimization for Feature Selection
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Challenges
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(1)

(2)
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We reformulate problems (1) and (2) to the following unconstrainted 
optimization problems

(3)

(4)
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Here, we find lower bounds for the absolute values of non-zero components of 
the optimal solution. More precisely, we find such lower and upper bounds that 
each component of the optimal solution lying inside the bounds must be 0.

Theorem. Let (𝑤1
∗, 𝑏1

∗ ) be a local optimal solution of problem (1). Then  𝑤1𝑖
∗

= 0 if  𝑤1𝑖
∗ ∈ −𝐼𝑖 , 𝐼𝑖 , where

𝐼𝑖=

𝑐3
2
𝑝(1 − 𝑝)

𝑒𝑖
𝑇 ሚ𝐴𝑇 ሚ𝐴𝑒𝑖 + 𝑐1𝑒𝑖

𝑇 ෨𝐵𝑇 ෨𝐵𝑒𝑖 + 𝑐𝑢𝑒𝑖
𝑇 ෩𝑈𝑇 ෩𝑈𝑒𝑖𝑝

1
2−𝑝

, 𝑖 = 1,2, … , 𝑛,

𝑒𝑖 is the ith column of the identity matrix, ሚ𝐴 is a submatrix of A composed of 
the columns corresponding to the non-zero components of 𝑤1

∗ and, ෨𝐵 and ෩𝑈 can 
be described analogously.  
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Theorem. Assume (𝑤2
∗, 𝑏2

∗ ) is a local optimal solution of problem (2). If  𝑤2𝑖
∗

∈ −𝐸𝑖 , 𝐸𝑖 , where

𝐸𝑖=

𝑐4
2 𝑝(1 − 𝑝)

𝑒𝑖
𝑇 ෨𝐵𝑇 ෨𝐵𝑒𝑖 + 𝑐1𝑒𝑖

𝑇 ሚ𝐴𝑇 ሚ𝐴𝑒𝑖 + 𝑐𝑢
∗𝑒𝑖

𝑇 ෩𝑈𝑇 ෩𝑈𝑒𝑖

1
2−𝑝

, 𝑖 = 1,2, … , 𝑛,

Then 𝑤2𝑖
∗ = 0.



Not that the terms 𝑤1 𝑝
𝑝 and 𝑤2 𝑝

𝑝 in the objective functions 
not only are non-smooth, but also are the sources of  non-convexity for 
problems (1) and  (2) and also (3) and (4). So, it is not an easy task to 
obtain the global solutions of  these problems. To resolve the issue of 
non-smooth terms, we approximate 𝑤1 𝑝

𝑝

= σ𝑖=1
𝑛 𝑤1𝑖

𝑝 by σ𝑖=1
𝑛 ( 𝑤1𝑖 + 𝜀0)

𝑝

and 𝑤2 𝑝
𝑝
= σ𝑖=1

𝑛 𝑤2𝑖
𝑝 by σ𝑖=1

𝑛 ( 𝑤2𝑖 + 𝜀0)
𝑝,  

where  𝜀0>0  is a very small number. Therefor, the problems  (3) and  
(4) are differentiable. 
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But, because of the terms σ𝑖=1
𝑛 ( 𝑤1𝑖 + 𝜀0)

𝑝 and σ𝑖=1
𝑛 ( 𝑤2𝑖 + 𝜀0)

𝑝 for  0 < 𝑝

< 1, the problems (3) and (4) are still non-convex. To overcome this defect, the 
non-convex terms σ𝑖=1

𝑛 ( 𝑤1𝑖 + 𝜀0)
𝑝 and σ𝑖=1

𝑛 ( 𝑤2𝑖 + 𝜀0)
𝑝 are 

replaced by the convex terms  𝛽⨂𝑤1 2
2 and ෨𝛽⨂𝑤2 2

2
, where 𝛽 and ෨𝛽 can be 

adjusted to fit the approximation.



So, we obtain the convex programming problems

(5)

(6)

The problems (5) and (6) can be solved by solving a systems of equations.



Twin Support Vector Machines (TSVM) and 
Multi-task learning
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Twin Support Vector Machines (TSVM) 
and 

Imbalanced Data
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Twin Support Vector Machines (TSVM) 
and 

Optimization Methods
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Robust TVSVM
Wang, X., Pardalos, P.M. A Survey of Support Vector Machines with 
Uncertainties. Ann. Data. Sci. 1, 293–309 (2014). https://doi.org/10.1007/s40745-
014-0022-8
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Twin Support Vector Machines (TSVM) 
and 

Multi-class data sets
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Twin-KSVC could be considered as a novel multi-class categorization 
depending on TWSVM (Xu et al., 2013). The approach employs ternary 
outputs of {-1, 0,+1} to assess all of the training data in a ‘‘1-versus-1-
versus-rest’’ framework. Two non-parallel hyperplanes for classes +1 
and -1 are created by addressing two quadratic programming problems, 
and the remaining sample data sets are labeled as 0. 
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(1)

(2)
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(9)

(10)

(3)

(4)
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(5)

(6)

(
1
1
)

(3)
(
1
1
)

(4)

As the objective functions of the above problems 

are only once differentiable we will use Generalized 

Newton’s Method to solve them.
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Exploring Novel Methods Inspired by 
Twin Support Vector Machines 

(TSVM)
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Twin SVM for regression
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Nonlinear separable problems
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Non-linear SVMs:  Feature spaces
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Challenging issues with TSVM

1. "Exploring Innovative Approaches for Data Separation"
2. "Introducing an Efficient Optimization Model for Enhanced Performance"
3. "Addressing Existing Challenges with Novel Solutions"
4. "Extending Binary Classification Methods to Multi-class Classification"
5. "Utilizing Sparse Solutions for Feature Selection"
6. "Dealing with Unbalanced Data and Structural Datasets"
7. "Tackling Multi-label Classification and Semi-supervised Learning"
8. "Handling Massive Datasets with TSVM"

106



Many Models of SVM

2024/4/

30

107 Wang, X., Pardalos, P.M. A Survey of Support Vector 
Machines with Uncertainties. Ann. Data. Sci. 1, 293–309 

(2014). https://doi.org/10.1007/s40745-014-0022-8
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Resources: Datasets

UCI Repository: 
http://www.ics.uci.edu/~mlearn/MLRepository.html

UCI KDD Archive: 
http://kdd.ics.uci.edu/summary.data.application.html

Statlib: http://lib.stat.cmu.edu/

Delve: http://www.cs.utoronto.ca/~delve/

108

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/~delve/


Journals
Journal of Machine Learning Research Machine Learning 
IEEE Transactions on Neural Networks
IEEE Transactions on Pattern Analysis and Machine 

Intelligence
Annals of Statistics
Journal of the American Statistical Association
 ...
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Resources: Conferences

International Conference on the Dynamics of Information Systems (DIS)
International Conference on Machine Learning (ICML) 
European Conference on Machine Learning (ECML)
Neural Information Processing Systems (NIPS)
International Joint Conference on Artificial Intelligence (IJCAI)
ACM SIGKDD Conference on Knowledge Discovery and Data Mining 

(KDD)
IEEE Int. Conf. on Data Mining (ICDM)
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https://link.springer.com/book/10.1007/978-3-031-50320-7
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Appendix
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Optimization
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Optimization Problem
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Some different types
of 

optimization problems?
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Optimization Taxonomy
116



Applications of Optimization?
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➢ Transportation

➢ Resource Allocation

➢ Portfolio Management

➢ Economics

➢ Manufacturing System

➢ Medical Science

➢ Data Mining
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Karush-Kuhn-Tucker Optimality Conditions
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Optimality Criteria
Big question: How do we know that we have found the “optimum” 

for min f(x)?

Answer: Test the solution for the “necessary and sufficient conditions”
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Optimality Conditions – Unconstrained Case
Let x* be the point that we think is the minimum for f(x)
Necessary condition (for optimality): 

f(x*) = 0
A point that satisfies the necessary condition is a stationary point It can be 

a minimum, maximum, or saddle point

How do we know that we have a minimum?
Answer: Sufficiency Condition:

The sufficient conditions for x* to be a strict local minimum are: 
f(x*) = 0

2f(x*) is positive definite 
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Constrained Case – KKT Conditions
To proof a claim of optimality in constrained minimization (or 

maximization), we have to check the found point with respect to 
the (Karesh) Kuhn Tucker conditions.

Kuhn and Tucker extended the Lagrangian theory to include the 
general classical single-objective nonlinear programming problem:

minimize f(x)

Subject to gj(x)  0 for j = 1, 2, ..., J
hk(x) = 0 for k = 1, 2, ..., K

x = (x1, x2, ..., xN)
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Necessary KKT Conditions
For the problem:

Min f(x)
s.t. 𝑔(𝑥)  0
(n variables, m constraints)

The necessary conditions are:
∇𝑓(𝑥) +  𝜇𝑖 𝑔𝑖(𝑥) = 0 (optimality)
𝑔𝑖(𝑥)  0 for i = 1, 2, ..., m   (feasibility)
𝜇𝑖 𝑔𝑖(𝑥) = 0 for i = 1, 2, ..., m (complementary slackness condition)
𝜇𝑖  0 for i = 1, 2, ..., m (non-negativity)

Note that the first condition gives n equations.
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Necessary KKT Conditions (General Case)
For general case (n variables, M Inequalities, L equalities):

Min f(x)
s.t.

𝑔𝑖 𝑥  0 for  i = 1, 2, ..., M 
ℎ𝑗(𝑥) = 0 for  j = 1, 2, ..., L

In all this, the assumption is that ∇gj(x*) for j belonging to active 
constraints and ∇hk(x*) for k = 1, ...,K are linearly independent 

The necessary conditions are:
∇ f(x) +  𝜇i ∇ gi(x) +  𝜆j ∇hj(x) = 0 (optimality)
gi(x)  0 for i = 1, 2, ..., M (feasibility)
hj(x) = 0 for j = 1, 2, ..., L (feasibility)
𝜇i gi(x) = 0 for i = 1, 2, ..., M  (complementary slackness condition)
𝜇i  0 for i = 1, 2, ..., M (non-negativity)
(Note: 𝜆j is unrestricted in sign)
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Restating the Optimization Problem 
Kuhn Tucker Optimization Problem:  Find vectors x(Nx1), m(1xM) and
l (1xK) that satisfy:
f(x) +  mi gi(x) +  lj hj(x) = 0 (optimality)
gi(x)  0 for i = 1, 2, ..., M (feasibility)
hj(x) = 0 for j = 1, 2, ..., L (feasibility)
𝜇𝑖 𝑔𝑖 𝑥 = 0 for i = 1, 2, ..., M (complementary slackness condition)
𝜇𝑖  0 for i = 1, 2, ..., M (non-negativity)

➢If x* is an optimal solution to NLP, then there exists a (𝜇*, 𝜆*) such 
that (x*, 𝜇*, 𝜆*) solves the Kuhn–Tucker problem.

➢Above equations not only give the necessary conditions for optimality, 
but also provide a way of finding the optimal point.
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Limitations
Necessity theorem helps identify points that are not optimal.  A point is 

not optimal if it does not satisfy the Kuhn–Tucker conditions.

On the other hand, not all points that satisfy the Kuhn-Tucker 
conditions are optimal points.

The Kuhn–Tucker sufficiency theorem gives conditions under which a 
point becomes an optimal solution to a single-objective NLP.
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Sufficiency Condition
 Sufficient conditions that a point x* is a strict local minimum of the NLP 

problem, where f, gj, and hk are twice differentiable functions are that

1) The necessary KKT conditions are met.
2) The Hessian matrix ∇2𝐿(x∗) = ∇2𝑓(x∗) + 𝜇𝑖∇

2𝑔𝑖(x∗)

+ 𝑙𝑗∇
2ℎ𝑗(x∗) is positive definite on a subspace of Rn as defined 

by the condition:
yT 2L(x*) y  0 is met for every vector y(1xN) satisfying:

gj(x*)y < 0  for j belonging to I1 = { j | gj(x*) = 0, uj* > 0}

(active constraints)
hk(x*)y = 0 for k = 1, ..., K                         𝑦 0
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KKT Sufficiency Theorem (Special Case)
Consider the classical single objective NLP problem.

minimize f(x)

Subject to gj(x)  0 for j = 1, 2, ..., J

hk(x) = 0 for k = 1, 2, ..., K

Let the objective function f(x) be convex, the inequality constraints gj(x) 
be all convex functions for j = 1, ..., J, and the equality constraints hk(x) 
for k = 1, ..., K be linear.

If this is true, then the necessary KKT conditions are also sufficient.
Therefore, in this case, if there exists a solution x* that satisfies the KKT 

necessary conditions, then x* is an optimal solution to the NLP problem.
In fact, it is a global optimum.
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Dual Problem
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Generalized Lagrangian Function 

Consider the general (primal) optimization problem

where the functions                                                                are 
defined on a domain Ω. The generalized Lagrangian was defined as
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Dual Problem and Strong Duality Theorem
Given the primal optimization problem, the dual problem of it was 

defined as  

Strong Duality Theorem: Given the primal optimization problem, 
where the domain Ω is convex and the constraints                  are 
affine functions. Then the optimum of the primal problem occurs at 
the same values as the optimum of the dual problem . 
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