A Short Journey through Graph Embedding Techniques XVI Summer School on Operational Research, Data and Decision Making

Mario R. Guarracino

Version 2.1 2024 05 14 1900

What is a network?

- A collection of points joined together in pairs by lines
 - Points joined together depend on the context
 - Points -> Vertices, nodes, actors ...
 - Lines -> Edges
- There are many real problems that can be modeled as networks
 - Individual parts linked in some way
 - Internet
 - A collection of computers linked together by data connections
 - Human societies
 - A collection of people linked by acquaintance or social interaction

Why Networks?

- •Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology,...
- Data availability (+computational challenges)
 - Web/mobile, bio, health, and medical
- •Impact!
 - Social networking, Social media, Drug design

Why networks?

- Both the individual components of a system (e.g., computer machines, people etc.) and the nature of their interaction are important.
- Equally important is the pattern of connections between these components.
 - These patterns significantly affect the performance of the underlying system.
- Patterns in a social network affect the way people obtain information, form opinions etc.
- Patterns in a network of financially connected companies provides the evidence of casual behavior among financial assets.

Social networks

- Network of people
 - Edges can represent friendships, relative relations, co-locations, replies to a given tweet.
- Traditionally social network studies were based on small scale networks
- Online social media have provided network data on previously unreachable scale

The Internet

Studying the Internet structure can help understand and improve the performance

ORA 2024

http://www.jeffkennedyassociates.com:16080/connections/concept/image.html

Co-authorship for statisticians Stat for E&T Economic Stat Social Stat Stat Demo

Node size: # publications per author. Edge size: # pubs shared by pairs of authors

ORA 2024

DOI' 10 1007 / 078 - 2 - 210 - 11002 - 111

Networks in Molecular Biology

 Protein-Protein interactions

- \cdot Protein-DNA interactions
- \cdot Genetic interactions
- \cdot Metabolic reactions
- \cdot Co-expression interactions
- \cdot Text mining interactions
- Association Networks

• Etc.

"MATHEMATICS IS THE ART OF GIVING THE SAME NAME TO DIFFERENT THINGS." JULES HENRI POINCARE (1854-1912)

http://spikedmath.com/382.html4

Networks: definitions

• Formally, a network is (a graph is)...

- G = (V, E), an ordered tuple of two sets
- $V = \{v_1, \dots, v_n\}$, a set of unique nodes, and

Undirected

Adjacency matrix

- A is $n \times n$ matrix (n = # of nodes)
 - Unweighted graph:
 - $A_{ij} = 1$ if $(i, j) \in E$, and 0 otherwise
 - Weighted graph:
 - A_{ij} = weight of edge (i, j)
 - *A* is symmetric for undirected graphs, and asymmetric for directed
- A can be sparse for real networks (very few non-zero entries)
 - Facebook friendship network:
 - |V| = n = 2.23e9
 - |E| = #edges = 173e9,
 - fraction of non-zero entries $\sim 7 \approx 10e-8$

 $A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$

Other network representations

Edge	\mathbf{list}	Adjacency	list
------	-----------------	-----------	------

(1, 2)	$1:\ 2,\ 3$
(1, 3)	2: 1, 3, 5
(2, 3)	$3:\ 1,\ 2,\ 5$
(2,5)	4:5
(3, 5)	5:2,3,4
(4, 5)	

- Edge list: Popular format for storing graphs
- Adjacency list: Fast retrieval of neighbours of node
- Adjacency matrix/list, edge list can be defined for directed graphs

ML tasks on networks

- Node classification/regression
 - Predict a type/value of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Adapted from Representation Learning²⁰²⁴ Networks, snap.stanford.edu/proj/embeddings-www

Example: Node Classification

Example: Node Classification

Proteins function classification

Ganapathiraju et al. *Nature* 2016.

Example: Link Prediction

Example: mafia meetings

- Nodes represent the members of the "Mistretta" and "Batanesi" family.
- Circled nodes represent the subjects investigated for being association leaders.
- The red and **yellow** circled nodes refer to bosses of other districts.
- The white knots represent the other subjects close to the association or useful for the purposes of the association.
- The width of the edges is proportional to the number of meetings and the size of the nodes to their degree.

•(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!

Feature Learning in Graphs

Goal: Efficient task-independent feature learning for machine learning in networks!

Why Is It Hard?

•Modern deep learning toolboxes are designed for simple sequences or grids.

• CNNs for fixed-size images/grids....

• RNNs or word2vec for text/sequences...

Why Is It Hard?

Networks are complex

• Complex topographical structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point (i.e., the isomorphism problem)
- Often dynamic and with multimodal features.

Background and traditional approaches

Graph Statistics and Kernel Methods

- Traditional approaches to ML using graph data follow the standard machine learning paradigm that was popular prior to the advent of deep learning.
- We begin by extracting some statistics or features—based on heuristic functions or domain knowledge—and then use these features as input to a standard machine learning algorithm (e.g., logistic regression).

Node degree

• The most straightforward node feature is *degree*, which is usually denoted d_u for a node $u \in V$ and simply counts the number of edges incident to a node:

$$d_u = \sum_{v \in V} \mathbf{A}[u, v]$$

- In cases of directed and weighted graphs, one can differentiate between different notions of degree.
 - corresponding to outgoing/incoming edges by summing over rows or columns
- In general, the node degree is an essential statistic, and it is often one of the most informative features in traditional ML models for node-level tasks.

Node centrality

- More powerful are the node centrality measures, which can form useful features in a wide variety of node classification tasks.
- One popular measure of centrality is the eigenvector centrality, which takes into account the importance of node's neighbors.
- In particular, we define a node's eigenvector centrality e_u via a recurrence relation in which the node's centrality is proportional to the average centrality of its neighbors:

$$e_u = \frac{1}{\lambda} \sum_{v \in V} \mathbf{A}[u, v] e_v \, \forall u \in \mathcal{V},$$

• where λ is a constant.

Node centrality

• Rewriting this equation in vector notation with *e* as the vector of node centralities, it defines the standard eigenvector equation for the adjacency matrix:

$\lambda \mathbf{e} = \mathbf{A}\mathbf{e}$

- the centrality measure that satisfies the above equation corresponds to the eigenvector of the adjacency matrix corresponding to the largest eigenvalue.
- One view of eigenvector centrality is that it ranks the likelihood that a node is visited on a random walk of infinite length on the graph.

The clustering coefficient

• The popular local variant of the clustering coefficient is computed as follows:

$$c_u = \frac{|(v_1, v_2) \in \mathcal{E} : v_1, v_2 \in \mathcal{N}(u)|}{\binom{d_u}{2}}.$$

- The numerator counts the number of edges between neighbours of node u in $\mathcal{N}(u) = \{v \in \mathcal{V} : (u, v) \in \mathcal{E}\}.$
- The denominator calculates how many pairs of nodes there are in *u*'s neighborhood.

The clustering coefficient

- The clustering coefficient measures how tightly clustered a node's neighborhood is.
- A clustering coefficient of 1 would imply that all of u's neighbors are also neighbors of each other.
- As with centrality, there are numerous variations of the clustering coefficient (e.g., to account for directed graphs).
- An important property of real-world networks is that they tend to have higher clustering coefficients than one would expect if edges were sampled randomly.

Node embeddings

William L. Hamilton, Graph Representation Learning, 2020

Node embeddings

- These methods encode nodes as low-dimensional vectors that summarize their graph position and the structure of their local graph neighborhood.
- In other words, we project nodes into a latent space, where geometric relations in this latent space correspond to relationships (e.g., edges) in the original graph or network.
- Node embeddings can be explained in the framework of encoding and decoding graphs.

Encoding and decoding graphs

- First, an encoder model maps each node in the graph into a low-dimensional vector or embedding.
- Next, a decoder model takes the low-dimensional node embeddings and uses them to reconstruct information about each node's neighborhood in the original graph.

The encoder

- The encoder maps nodes $v \in V$ to vector embeddings $z_v \in \mathbb{R}^d$, where z_v corresponds to the embedding for node $v \in V$.
- In the simplest case, the encoder has the following signature: $\mathrm{ENC}:\,V\,\rightarrow\mathbb{R}^d$
- The encoder often relies on what we call the *shallow embedding* approach, where this encoder is simply an embedding lookup based on the node ID:

$$ENC(v) = \mathbf{Z}[v]$$

• where $\mathbf{Z} \in \mathbb{R}^{|v| \times d}$ is a matrix containing the embedding vectors for all nodes and $\mathbf{Z}[v]$ denotes the row of \mathbf{Z} corresponding to node v.

Beyond shallow embedding

- The encoder can also be generalized beyond the shallow embedding approach.
- For instance, the encoder can use node features or the local graph structure around each node as input to generate an embedding.
- These generalized encoder architectures are often called graph neural networks (GNNs)

The decoder

- The role of the decoder is to reconstruct some graph statistics from the node embeddings that are generated by the encoder.
- For example, given a node embedding \mathbf{z}_u of a node u, the decoder might attempt to predict u's set of neighbors $\mathcal{N}(u)$.
- It is standard to define pairwise decoders, which have the following signature:

$$DEC: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+.$$

• Pairwise decoders can be interpreted as predicting the relationship or similarity between pairs of nodes.

The decoder

- A simple pairwise decoder could predict whether two nodes are neighbors in the graph.
- Applying the pairwise decoder to a pair of embeddings $(\mathbf{z}_u, \mathbf{z}_v)$ results in the reconstruction of the relationship between u and v.
- The goal is optimizing the encoder and decoder to minimize the reconstruction loss, so that:

 $DEC(ENC(u); ENC(v)) = DEC(\mathbf{z}_u, \mathbf{z}_v) \approx \mathbf{S}[u; v]$

- Here, we assume that **S**[*u*; *v*] is a graph-based similarity measure between nodes.
- For example, the simple reconstruction objective of predicting whether two nodes are neighbors would correspond to

$$\mathbf{S}[u;v] \triangleq \mathbf{A}[u,v].$$

Optimizing an Encoder-Decoder

• The standard practice is to minimize an empirical reconstruction loss \mathcal{L} over a set of training node pairs \mathcal{D} :

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \ell(\text{DEC}(\mathbf{z}_u, \mathbf{z}_v), \mathbf{S}[u; v]),$$

- where $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a loss function measuring the discrepancy between the estimated $\text{DEC}(\mathbf{z}_u, \mathbf{z}_v)$ and the true values $\mathbf{S}[u; v]$.
- Depending on the definition of DEC and ${\bf S},$ the loss function ℓ can be a mean-squared error or even a classification loss.
- Most approaches minimize the loss using stochastic gradient descent, but matrix factorization can be also used.

Encoder-Decoder Approaches

Factorization-based approaches

- One way of viewing the encoder-decoder idea is from the perspective of matrix factorization.
- Indeed, decoding local neighborhood structure from a node's embedding is closely related to reconstructing entries in the graph adjacency matrix.
- We can view this as a matrix factorization task to learn a lowdimensional approximation of a node-node similarity matrix S, where S generalizes the adjacency matrix and captures some user defined notion of node-node similarity

Laplacian eigenmaps

- One of the earliest factorization-based approaches is the Laplacian eigenmaps (LE) technique, which builds upon the spectral clustering.
- In this approach, the decoder based on the L2-distance between the node embeddings is:

$$DEC(\mathbf{z}_u, \mathbf{z}_v) = \|\mathbf{z}_u - \mathbf{z}_v\|_2^2.$$

• The loss function then weighs pairs of nodes according to their similarity in the graph:

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \text{DEC}(\mathbf{z}_u, \mathbf{z}_v) \cdot \mathbf{S}[u; v].$$

ORA 2024

Laplacian eigenmaps

- The intuition behind this approach is that we penalize the model when very similar nodes have embeddings that are far apart.
- If **S** satisfies the properties of a Laplacian matrix, then the node embeddings that minimize the loss are identical to the solution for spectral clustering.
- If we assume the embeddings \mathbf{z}_u are d-dimensional, then the optimal solution is given by the d smallest eigenvectors of the Laplacian (excluding zero eigenvalues and the eigenvector of all ones).

Inner-product methods

- Following on the Laplacian eigenmaps technique, we can use an inner-product based decoder, defined as follows: $DEC(\mathbf{z}_u, \mathbf{z}_v) = \mathbf{z}_u^{\mathsf{T}} \mathbf{z}_v$
- Here, we assume that the similarity between two nodes e.g., the overlap between their local neighborhoods – is proportional to the dot product of their embeddings.
- Some examples of this style of node embedding algorithms include the Graph Factorization (GF) approach [Ahmed et al., 2013], GraRep [Cao et al., 2015], and HOPE [Ou et al., 2016].

Inner-product methods

• These three methods combine the inner-product decoder with the following mean-squared error:

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} \|\text{DEC}(\mathbf{z}_u, \mathbf{z}_v) - \mathbf{S}[u; v]\|_2^2.$$

- They differ primarily in how they define **S**[*u*; *v*], i.e., the notion of node-node similarity or neighborhood overlap that they use.
- Whereas the GF approach directly uses the adjacency matrix and sets $\mathbf{S} \triangleq \mathbf{A}$, the GraRep defines \mathbf{S} based on powers of the adjacency matrix, while the HOPE uses neighborhood overlap measures.

Random walk embeddings

- The inner-product methods discussed so far all employ deterministic measures of node similarity.
- They often define **S** as a polynomial function of the adjacency matrix, and the node embeddings are optimized so that $\mathbf{z}_u^{\mathsf{T}} \mathbf{z}_v \approx \mathbf{S}[u, v]$.
- Building on these, many methods have adapted the innerproduct approach to use stochastic measures of neighborhood overlap.
- Key innovation: two nodes have similar embeddings if they tend to co-occur on short random walks over the graph.

- Similar to the matrix factorization approaches described so far, DeepWalk and node2vec use a shallow embedding approach and an inner-product decoder.
- The key distinction in these methods is in how they define the notions of node similarity and neighborhood reconstruction.
- Instead of directly reconstructing the adjacency matrix A or some deterministic function of A – these approaches optimize embeddings to encode the statistics of random walks.

- The goal is to learn embeddings so that the following holds: $DEC(\mathbf{z}_u, \mathbf{z}_v) \equiv \frac{e^{\mathbf{z}_u^{\mathsf{T}} \mathbf{z}_v}}{\sum_{v_k \in V} \mathbf{z}_u^{\mathsf{T}} \mathbf{z}_v} \approx p_{\mathcal{G}, T}(u|v)$
- where $p_{\mathcal{G},T}(u|v)$ is the probability of visiting v on a length-T random walk starting at u, with T usually defined to be in the range $T \in \{2, ..., 10\}$.
- Again, a key difference with the factorization-based approaches is that here the similarity measure is both stochastic and asymmetric.

• To train random walk embeddings, the general strategy is to use the above decoder and minimize the cross-entropy loss:

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} -\log(\mathrm{DEC}(\mathbf{z}_u, \mathbf{z}_v)).$$

- Here, we use \mathcal{D} to denote the training set of random walks, which is generated by sampling random walks starting from each node.
- For example, we can assume that N pairs of co-occurring nodes for each node u are sampled from the distribution $(u, v) \sim p_{G,T}(u|v)$.

- Evaluating that loss function can be computationally expensive.
- node2vec employs a *noise contrastive* approach, where the normalizing factor is approximated using negative samples [Grover and Leskovec, 2016]:

$$\mathcal{L} = \sum_{(u,v)\in\mathcal{D}} -\log(\sigma(\mathbf{z}_u^{\mathsf{T}}\mathbf{z}_v)) - \gamma \mathbb{E}_{v_n \sim P_n(\mathbf{V})}[\log(-\sigma(\mathbf{z}_u^{\mathsf{T}}\mathbf{z}_{v_n}))].$$

• Here, σ denotes the logistic function, $P_n(\mathbf{V})$ to denote a distribution over the set of nodes \mathbf{V} , and $\gamma > 0$ is a hyperparameter.

Limits: parameter sharing

- Shallow embedding methods do not share any parameters between nodes in the encoder, since the encoder directly optimizes a unique embedding vector for each node.
- This lack of parameter sharing is both statistically and computationally inefficient.
- From a statistical perspective, parameter sharing can improve the efficiency of learning and also act as a powerful form of regularization.
- From the computational perspective, the number of parameters necessarily grows as $\mathcal{O}(|\mathbf{V}|)$, which can be intractable in massive graphs.

Limits: leveraging

- A second key issue with shallow embedding approaches is that they do not leverage node features in the encoder.
- Many graph datasets have rich feature information, which could potentially be informative in the encoding process.

Limits: transductivity

- Shallow embedding methods are transductive: they can generate embeddings only for training nodes.
- Generating embeddings for new nodes is sometimes possible with additional optimizations to learn their embeddings.
- This restriction prevents shallow embedding methods from being used on inductive applications, which involve generalizing to unseen nodes after training.