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What is a network?
•A collection of points joined together in pairs by lines 
• Points joined together depend on the context 
• Points -> Vertices, nodes, actors … 
• Lines -> Edges 

•There are many real problems 
that can be modeled as networks 
• Individual parts linked in some way 
• Internet 

• A collection of computers linked together by data connections 

• Human societies 
• A collection of people linked by acquaintance or social interaction 
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Why Networks? 
•Universal language for describing complex data
•Networks from science, nature, and technology are more similar

than one would expect
•Shared vocabulary between fields
•Computer Science, Social science, Physics, Economics, Statistics, 

Biology,…
•Data availability (+computational challenges)
•Web/mobile, bio, health, and medical

• Impact!
•Social networking, Social media, Drug design
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Why networks?
•Both the individual components of a system (e.g., computer 

machines, people etc.) and the nature of their interaction are 
important. 
•Equally important is the pattern of connections between these 

components.
• These patterns significantly affect the performance of the underlying system.

•Patterns in a social network affect the way people obtain 
information, form opinions etc. 
•Patterns in a network of financially connected companies provides 

the evidence of casual behavior among financial assets.  
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Social networks
•Network of people 
• Edges can represent friendships, 

relative relations, co-locations, 
replies to a given tweet. 

•Traditionally social network 
studies were based on 
small scale networks 
•Online social media have provided 
network data on previously 
unreachable scale
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The Internet
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http://www.jeffkennedyassociates.com:16080/connections/concept/image.html

Studying the Internet structure can help understand and improve the performance



Co-authorship for statisticians
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Node size: # publications per author. Edge size: # pubs shared by pairs of authors

DOI: 10.1007/978-3-319-44093-4_11



Networks in Molecular Biology

Barabasi & Oltvai, Nature Reviews, 2004

• Protein-Protein 
interactions

• Protein-DNA interactions

• Genetic interactions

• Metabolic reactions

• Co-expression interactions

• Text mining interactions

• Association Networks

• Etc.ORA 2024
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Networks: definitions
•Formally, a network is (a graph is)…
•𝐺 = (𝑉, 𝐸), an ordered tuple of two sets
•𝑉 = {𝑣1, … , 𝑣𝑛}, a set of unique nodes, and
•𝐸 = {(𝑣𝑖, 𝑣𝑗), … }, a set of (un)ordered node tuples
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Adjacency matrix
•A is 𝑛 × 𝑛 matrix (𝑛 = # of nodes)
• Unweighted graph: 
𝐴!" = 1 if 𝑖, 𝑗 ∈ 𝐸, and 0 otherwise 
• Weighted graph: 
𝐴!" = weight of edge (𝑖, 𝑗)
• 𝐴 is symmetric for undirected graphs, and asymmetric

for directed

•A can be sparse for real networks 
(very few non-zero entries)
• Facebook friendship network: 
• |𝑉| = 𝑛 = 2.23𝑒9
• 𝐸 = #𝑒𝑑𝑔𝑒𝑠 = 173𝑒9, 
• fraction of non-zero entries ~7 ≈ 10𝑒 − 8
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Other network representations
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ML tasks on networks
•Node classification/regression
•Predict a type/value of a given node

•Link prediction
•Predict whether two nodes are linked

•Community detection
• Identify densely linked clusters of nodes

•Network similarity
•How similar are two (sub)networks

Adapted from Representation Learning on Networks, snap.stanford.edu/proj/embeddings-wwwORA 2024



Example: Node Classification
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Example: Node Classification

Proteins function classification

Ganapathiraju et al. Nature 2016. ORA 2024



Example: Link Prediction
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Example: mafia meetings
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• Nodes represent the members of the 
‘‘Mistretta” and ‘‘Batanesi” family. 

• Circled nodes represent the subjects
investigated for being association leaders. 

• The red and circled nodes refer to 
bosses of other districts. 

• The white knots represent the other
subjects close to the association or useful
for the purposes of the association. 

• The width of the edges is proportional to 
the number of meetings and the size of the 
nodes to their degree.

doi.org/10.1016/j.eswa.2020.113666

https://doi.org/10.1016/j.eswa.2020.113666


ML Lifecycle
• (Supervised) Machine Learning Lifecycle: This feature, that
feature. Every single time!

Raw 
Data

Structured 
Data

Learning 
Algorithm  Model

Downstream 
prediction task

Feature 
Engineering

Automatically 
learn the features
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Feature Learning in Graphs
Goal: Efficient task-independent feature learning for machine learning 

in networks!

vecnode 2

𝑓: 𝐯 → ℝ!

ℝ!

Feature representation, embedding

𝐯
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Why Is It Hard?
•Modern deep learning toolboxes are designed for 
simple sequences or grids.
•CNNs for fixed-size images/grids….

•RNNs or word2vec for text/sequences…
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Why Is It Hard?
Networks are complex
• Complex topographical structure (i.e., no spatial locality like grids)

• No fixed node ordering or reference point  (i.e., the isomorphism problem)
• Often dynamic and with multimodal features.
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Background 
and traditional approaches
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Graph Statistics and Kernel Methods
•Traditional approaches to ML using graph data follow the 
standard machine learning paradigm that was popular prior to 
the advent of deep learning.
•We begin by extracting some statistics or features—based on 
heuristic functions or domain knowledge—and then use these 
features as input to a standard machine learning algorithm (e.g., 
logistic regression).
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Node degree
• The most straightforward node feature is degree, which is usually 

denoted 𝑑$ for a node 𝑢 ∈ 𝑉 and simply counts the number of edges 
incident to a node:

𝑑$ =&
%∈'

𝐀[𝑢, 𝑣]

• In cases of directed and weighted graphs, one can differentiate 
between different notions of degree.
• corresponding to outgoing/incoming edges by summing over rows or 

columns
• In general, the node degree is an essential statistic, and it is often one 

of the most informative features in traditional ML models for node-level 
tasks. ORA 2024



Node centrality
•More powerful are the node centrality measures, which can 
form useful features in a wide variety of node classification 
tasks.
•One popular measure of centrality is the eigenvector centrality, 
which takes into account the importance of node’s neighbors. 
• In particular, we define a node’s eigenvector centrality 𝑒! via a 
recurrence relation in which the node’s centrality is proportional 
to the average centrality of its neighbors:

•where 𝜆 is a constant. 
ORA 2024



Node centrality
•Rewriting this equation in vector notation with 𝑒 as the vector of 
node centralities, it defines the standard eigenvector equation 
for the adjacency matrix:

𝜆𝐞 = 𝐀𝐞
• the centrality measure that satisfies the above equation 
corresponds to the eigenvector of the adjacency matrix 
corresponding to the largest eigenvalue. 
•One view of eigenvector centrality is that it ranks the likelihood 
that a node is visited on a random walk of infinite length on the 
graph. 
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The clustering coefficient
•The popular local variant of the clustering coefficient is 
computed as follows:

• The numerator counts the number of edges between neighbours of 
node 𝑢 in 𝒩 𝑢 = 𝑣 ∈ 𝒱 ∶ 𝑢, 𝑣 ∈ ℰ .
• The denominator calculates how many pairs of nodes there are in 𝑢’s 

neighborhood.
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The clustering coefficient
•The clustering coefficient measures how tightly clustered a 
node's neighborhood is. 
•A clustering coefficient of 1 would imply that all of 𝑢's neighbors 
are also neighbors of each other.
•As with centrality, there are numerous variations of the 
clustering coefficient (e.g., to account for directed graphs). 
•An important property of real-world networks is that they tend 
to have higher clustering coefficients than one would expect if 
edges were sampled randomly.
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Node embeddings
William L. Hamilton, Graph Representation Learning, 2020
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Node embeddings
•These methods encode nodes as low-dimensional vectors that 
summarize their graph position and the structure of their local 
graph neighborhood.
• In other words, we project nodes into a latent space, where 
geometric relations in this latent space correspond to 
relationships (e.g., edges) in the original graph or network.
•Node embeddings can be explained in the 
framework of encoding and 
decoding graphs. 
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Encoding and decoding graphs
•First, an encoder model maps each node in the graph into a 
low-dimensional vector or embedding. 
•Next, a decoder model takes the low-dimensional node 
embeddings and uses them to reconstruct information about 
each node's neighborhood in the original graph.
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The encoder
•The encoder maps nodes 𝑣 ∈ 𝑉 to vector embeddings 𝑧" ∈ ℝ#, 
where 𝑧" corresponds to the embedding for node 𝑣 ∈ 𝑉. 
• In the simplest case, the encoder has the following signature:

ENC ∶ 𝑉 → ℝ#

•The encoder often relies on what we call the shallow embedding
approach, where this encoder is simply an embedding lookup 
based on the node ID: 

ENC(𝑣) = 𝐙[𝑣]
•where 𝐙 ∈ ℝ $ ×# is a matrix containing the embedding vectors for 
all nodes and 𝐙[𝑣] denotes the row of 𝐙 corresponding to node 𝑣.

ORA 2024



Beyond shallow embedding
•The encoder can also be generalized beyond the shallow 
embedding approach. 
•For instance, the encoder can use node features or the local 
graph structure around each node as input to generate an 
embedding. 
•These generalized encoder architectures are often called graph 
neural networks (GNNs) 
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The decoder
•The role of the decoder is to reconstruct some graph statistics 
from the node embeddings that are generated by the encoder. 
•For example, given a node embedding 𝐳! of a node 𝑢, the 
decoder might attempt to predict 𝑢's set of neighbors 𝒩(𝑢).
• It is standard to define pairwise decoders, which have the 
following signature:

DEC ∶ ℝ#×ℝ# → ℝ&.
•Pairwise decoders can be interpreted as predicting the 
relationship or similarity between pairs of nodes. 
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The decoder
•A simple pairwise decoder could predict whether two nodes are 

neighbors in the graph.
•Applying the pairwise decoder to a pair of embeddings (𝐳6, 𝐳7)

results in the reconstruction of the relationship between 𝑢 and 𝑣. 
•The goal is optimizing the encoder and decoder to minimize the 

reconstruction loss, so that:
DEC ENC 𝑢 ; ENC 𝑣 = DEC 𝐳6, 𝐳7 ≈ 𝐒[𝑢; 𝑣]

•Here, we assume that 𝐒[𝑢; 𝑣] is a graph-based similarity measure 
between nodes.
• For example, the simple reconstruction objective of predicting 

whether two nodes are neighbors would correspond to 
𝐒 𝑢; 𝑣 ≜ 𝐀 𝑢, 𝑣 .ORA 2024



Optimizing an Encoder-Decoder
•The standard practice is to minimize an empirical reconstruction 
loss ℒ over a set of training node pairs 𝒟:

ℒ = D
!," ∈𝒟

ℓ DEC 𝐳!, 𝐳" , 𝐒 𝑢; 𝑣 ,

•where ℓ:ℝ×ℝ → ℝ is a loss function measuring the discrepancy
between the estimated DEC 𝐳!, 𝐳" and the true values 𝐒 𝑢; 𝑣 . 
•Depending on the definition of DEC and 𝐒, the loss function ℓ can 
be a mean-squared error or even a classification loss.
•Most approaches minimize the loss using stochastic gradient 
descent, but matrix factorization can be also used.
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Encoder-Decoder Approaches
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Factorization-based approaches
•One way of viewing the encoder-decoder idea is from the 
perspective of matrix factorization. 
• Indeed, decoding local neighborhood structure from a node's 
embedding is closely related to reconstructing entries in the 
graph adjacency matrix. 
•We can view this as a matrix factorization task to learn a low-
dimensional approximation of a node-node similarity matrix S, 
where S generalizes the adjacency matrix and captures some 
user defined notion of node-node similarity
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Laplacian eigenmaps
•One of the earliest factorization-based approaches is the 
Laplacian eigenmaps (LE) technique, which builds upon the 
spectral clustering.
• In this approach, the decoder based on the L2-distance 
between the node embeddings is:

DEC 𝐳!, 𝐳" = 𝐳𝒖 − 𝐳𝒗 𝟐
𝟐.

•The loss function then weighs pairs of nodes according to their 
similarity in the graph:

ℒ = D
!," ∈𝒟

DEC 𝐳!, 𝐳" ⋅ 𝐒 𝑢; 𝑣 .
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Laplacian eigenmaps
•The intuition behind this approach is that we penalize the model 
when very similar nodes have embeddings that are far apart.
• If 𝐒 satisfies the properties of a Laplacian matrix, then the node 
embeddings that minimize the loss are identical to the solution 
for spectral clustering. 
• If we assume the embeddings 𝐳! are 𝑑-dimensional, then the 
optimal solution is given by the 𝑑 smallest eigenvectors of the 
Laplacian (excluding zero eigenvalues and the eigenvector of all 
ones).
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Inner-product methods
•Following on the Laplacian eigenmaps technique, we can use 
an inner-product based decoder, defined as follows:

DEC 𝐳!, 𝐳" = 𝐳𝒖-𝐳𝒗
•Here, we assume that the similarity between two nodes – e.g., 
the overlap between their local neighborhoods – is proportional 
to the dot product of their embeddings.
•Some examples of this style of node embedding algorithms 
include the Graph Factorization (GF) approach [Ahmed et al., 2013], 
GraRep [Cao et al., 2015], and HOPE [Ou et al., 2016]. 
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Inner-product methods
•These three methods combine the inner-product decoder with 
the following mean-squared error:

ℒ = D
!," ∈𝒟

DEC 𝐳!, 𝐳" − 𝐒 𝑢; 𝑣 𝟐
𝟐.

•They differ primarily in how they define 𝐒 𝑢; 𝑣 , i.e., the notion of 
node-node similarity or neighborhood overlap that they use. 
•Whereas the GF approach directly uses the adjacency matrix 
and sets 𝐒 ≜ 𝐀, the GraRep defines 𝐒 based on powers of the 
adjacency matrix, while the HOPE uses neighborhood overlap 
measures.
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Random walk embeddings
•The inner-product methods discussed so far all employ 
deterministic measures of node similarity. 
•They often define 𝐒 as a polynomial function of the adjacency 
matrix, and the node embeddings are optimized so that 𝐳!-𝐳" ≈
𝐒[𝑢, 𝑣]. 
•Building on these, many methods have adapted the inner-
product approach to use stochastic measures of neighborhood 
overlap. 
•Key innovation: two nodes have similar embeddings if they tend 
to co-occur on short random walks over the graph.
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DeepWalk and node2vec
•Similar to the matrix factorization approaches described so far, 
DeepWalk and node2vec use a shallow embedding approach 
and an inner-product decoder. 
•The key distinction in these methods is in how they define the 
notions of node similarity and neighborhood reconstruction. 
• Instead of directly reconstructing the adjacency matrix 𝐀 − or 
some deterministic function of 𝐀 − these approaches optimize 
embeddings to encode the statistics of random walks. 
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DeepWalk and node2vec
•The goal is to learn embeddings so that the following holds:

DEC 𝐳!, 𝐳" ≡
𝑒𝐳#$𝐳%

∑"&∈$ 𝐳!
-𝐳"

≈ 𝑝𝒢,0 𝑢 𝑣

•where 𝑝𝒢,0(𝑢|𝑣) is the probability of visiting 𝑣 on a length-𝑇
random walk starting at 𝑢, with 𝑇 usually defined to be in the 
range 𝑇 ∈ {2, … , 10}. 
•Again, a key difference with the factorization-based approaches 
is that here the similarity measure is both stochastic and 
asymmetric.
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DeepWalk and node2vec
•To train random walk embeddings, the general strategy is to use 
the above decoder and minimize the cross-entropy loss:

ℒ = D
!," ∈𝒟

−log(DEC 𝐳!, 𝐳" ).

•Here, we use 𝒟 to denote the training set of random walks, which 
is generated by sampling random walks starting from each node. 
•For example, we can assume that 𝑁 pairs of co-occurring nodes 
for each node 𝑢 are sampled from the distribution (𝑢, 𝑣)~𝑝𝒢,0(𝑢|𝑣).
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DeepWalk and node2vec
•Evaluating that loss function can be computationally expensive. 
•node2vec employs a noise contrastive approach, where the 
normalizing factor is approximated using negative samples [Grover 
and Leskovec, 2016]:

ℒ = D
!," ∈𝒟

−log 𝜎 𝐳!-𝐳" − 𝛾𝔼"'~2' 𝐕 [log(−𝜎 𝐳!-𝐳"' )].

•Here, 𝜎 denotes the logistic function, 𝑃4(𝐕) to denote a distribution 
over the set of nodes 𝐕, and 𝛾 > 0 is a hyperparameter. 
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Limits: parameter sharing
•Shallow embedding methods do not share any parameters 
between nodes in the encoder, since the encoder directly 
optimizes a unique embedding vector for each node. 
•This lack of parameter sharing is both statistically and 
computationally inefficient. 
•From a statistical perspective, parameter sharing can improve 
the efficiency of learning and also act as a powerful form of 
regularization. 
•From the computational perspective, the number of parameters 
necessarily grows as 𝒪(|𝐕|), which can be intractable in massive 
graphs. ORA 2024



Limits: leveraging
•A second key issue with shallow embedding approaches is that 
they do not leverage node features in the encoder. 
•Many graph datasets have rich feature information, which could 
potentially be informative in the encoding process.
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Limits: transductivity
•Shallow embedding methods are transductive: they can 
generate embeddings only for training nodes.
•Generating embeddings for new nodes is sometimes possible 
with additional optimizations to learn their embeddings. 
•This restriction prevents shallow embedding methods from 
being used on inductive applications, which involve generalizing 
to unseen nodes after training.
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