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Overview of the Value of Information (VoI) Theory Motivation: Learning Systems

Learning Systems

PerformanceOO

Time
//

InformationOO

Time
//

Optimal learning

PerformanceOO

Information
//

Maximize performance

s.t. information ≤ λ
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Overview of the Value of Information (VoI) Theory Motivation: Learning Systems

Information and its Value

Claude Shannon

Ixy =
∑
(x,y)

[
ln

P (x | y)
P (x)

]
P (x, y)

(Shannon, 1948)

(Stratonovich, 1965, 1975): Ruslan Stratonovich

◦ R. V. Belavkin (2013). Optimal measures and Markov transition kernels. Journal

of Global Optimization, Vol. 55 (387–416).

◦ R. V. Belavkin (2010). Utility and Value of Information in Cognitive Science,

Biology and Quantum Theory. Quantum Bio-Informatics III, 2009.
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Overview of the Value of Information (VoI) Theory Motivation: Learning Systems

Three Types of Information

Definition (Hartley Information)

H := ln |X|

Definition (Boltzmann Information)

HP (X) := −
∑
X

[lnP (x)]P (x) ≤ ln |X|

Definition (Shannon Information)

I(X,Y ) := H(X)−H(X | Y ) ≤ H(X)
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Overview of the Value of Information (VoI) Theory Example: Mean-Square Minimization

Example: Mean-Square Minimization

Clusters

0 2 4 6 8 10
0

2

4

6

8

10

x

y

◦ P (x), c : X ×X → R
◦ Find y ∈ X minimizing

EP {c(x, y)} =
∑
x

1

2
(x− y)2 P (x)

◦ Optimal ŷ is defined by

ŷ = E{x}
k-Means clustering

◦ Let us partition X into k = 3 subsets X1, X2, X3

◦ This corresponds to some mapping z(x) (z : X → {z1, z2, z3})
◦ Find y1, y2, y3 minimizing∑

z

EP (x|z)

{
1

2
(x− y)2 | z

}
P (z) , ŷ(z) = E{x | z}
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Overview of the Value of Information (VoI) Theory Example: Mean-Square Minimization

Value of Hartley’s information

◦ Define the following quantities:

U(0) := sup
y

EP (x){u(x, y)}

U(I) := sup
z(x)

EP (z)

{
sup
y(z)

EP (x|z){u(x, y) | z}

}
Subject to |Z| ≤ eI

◦ The value of Hartley information (Stratonovich, 1965):

V (I) := U(I)− U(0)

Remark
We are looking for optimal function y(x) = y ◦ z(x) subject to
|Y | ≤ |Z| ≤ eI .
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Overview of the Value of Information (VoI) Theory Example: Mean-Square Minimization

Value of Shannon’s information

◦ Define the following quantities:

U(0) := sup
y

EP (x){u(x, y)}

U(I) := sup
P (y|x)

EP (x,y){u(x, y)}

Subject to I(X,Y ) ≤ I

◦ The value of Shannon’s information (Stratonovich, 1965):

V (I) := U(I)− U(0)

Remark
Instead of functions y(x) = y ◦ z(x), we are looking for optimal P (y | x)
subject to I(X,Y ) ≤ I.
See R. V. Belavkin, 2018 for a relation to optimal transport.
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Overview of the Value of Information (VoI) Theory Variational Problems

VoI as Conditional Extremum

◦ Linear programming problem V (I):

maximize EP (y|x){u(x, y)} subject to I(X,Y ) ≤ I

◦ The inverse convex programming problem I(V ):

minimize I(X,Y ) subject to EP (y|x){u(x, y)} ≥ V

PerformanceOO

Information
//

Maximize performance

s.t. information ≤ I
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Solution for Shannon’s VoI

Outline of solution

◦ Lagrange function

K(p, β) = Ep{ln(p/q)}+ β[U − Ep{u}]

◦ Necessary and sufficient conditions ∇K(p, β) = 0:

∇pK(p, β) = ln(p/q) + 1− β u = 0

∇βK(p, β) = U − Ep{u} = 0

◦ Optimal solutions:

p(β) = eβ u−Γ(β) q , Ep(β){u} = U
(
Ep{ln(p/q) = I}

)
◦ Optimal inverse temperature β:

β =
dI(U)

dU
or β−1 =

dU(I)

dI
β

d

dβ
Γ(β)− Γ(β) = I
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Solution for Shannon’s VoI

Information-Geometric View

◦ The set of all probability
measures

P(Ω) := {p : p ≥ 0 , Ep{1} = 1}

◦ Ep{u} := ⟨u, p⟩ is linear
◦ Ep{ln(p/q)} =: I(p, q) is
convex

ω3

ω1ω2

q

Ep{ln(p/q)} ≤ λ
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Solution for Shannon’s VoI

Information-Geometruc View (cont)

◦ Maximize Ep{u}

U(I) := sup{Ep{u} : I(p, q) ≤ I}

◦ Minimize I(p, q):

I(U) := inf{I(p, q) : Ep{u} ≥ U}

◦ Optimal solutions:

p(β) = eβ u−Γ(β) q

◦ Constraints

Ep(β){u} = U,
(
Ep{ln(p/q)} = I

)
◦ P(X ⊗ Y )

ω3

ω1ω2

q

pβ

Ep{f} ≥ υ

Ep{ln(p/q)} ≤ λ
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Solution for Shannon’s VoI

Solution to the Value of Shannon’s Information

◦ Solutions to V (I) are optimal joint probabilities of the form:

P (x | y) =

◦ The law of total probability gives two equations:∑
x

eβ u(x,y)−γ(β,x) P (x) = 1 ,
∑
y

eβ u(x,y)Q(y) = eγ(β,x)

◦ Use the cumulant generating function

Γ(β) =
∑
x

γ(x, β)P (x)

◦ Find U(I) from

U(β) =
dΓ(β)

dβ
, I(β) = βΓ′(β)− Γ(β)

◦ β−1 = U ′(I) is called temperature.

◦ Note that Q(y) =
∑

x P (y | x)P (x)
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Solution for Shannon’s VoI

Computation of VoI

◦ Solutions to V (I) are optimal joint probabilities of the form:

P (x | y) = eβu(x,y)−Γ0(β)

◦ If T (·) =
∑

x e
β u(x,y)(·) is invertible, then

T (e−γ(β,x) P (x)) = 1 ⇐⇒ e−γ(β,x) P (x) = T−1(1) =: e−γ0(β,x)

◦ The conditional cumulant generating function is

Γ0(β) =
∑
x

γ0(β, x)P (x) = Γ(β) +H(X)

◦ Find U(I) from

U(β) =
dΓ0(β)

dβ
, I(β) = H(X)− [Γ0(β)− βΓ′

0(β)]︸ ︷︷ ︸
H(X|Y )Theorem

e−γ0(β,x) = e−Γ0(β) ⇐⇒ T (1) =
∑
x

eβ u(x,y) = eΓ0(β)
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Computation of VoI The Binary Case
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Computation of VoI The Binary Case

Example: The Binary Case (R. Belavkin, Pardalos, & Principe,
2022)

◦ Let X × Y = {x1, x2} × {y1, y2} and u : X × Y → R:[
u11 u12
u21 u22

] [
c1 + d1 c1 − d1
c2 − d2 c2 + d2

] [
c+ d c− d
c− d c+ d

]
◦ For P (x) ∈ {p, 1− p} the equation ∥eβ u(x,y)∥TP (x) e−γ(β,x) = 1 is[

e−γ0(β,x1)

e−γ0(β,x2)

]
=

[
e−β c1 sinh(β d2)

sinh[β (d1+d2)]

e−β c2 sinh(β d1)
sinh[β (d1+d2)]

]
◦ This gives

Γ0(β) = β c+ ln [2 cosh(β d)]

U(β) = c+ d tanh(β d)

I(β) = H(X)− [ln[2 cosh(β d)]− β d tanh(β d)]

◦ Explicit dependency

I(U) = H2[p]−H2

[
1

2
+

1

2

U − c

d

]
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Computation of VoI The Binary Case

Computation of Q(y) in the Binary Case

◦ Let X × Y = {x1, x2} × {y1, y2} and u : X × Y → R:[
u11 u12
u21 u22

] [
c1 + d1 c1 − d1
c2 − d2 c2 + d2

] [
c+ d c− d
c− d c+ d

]
◦ For Q(y) ∈ {q, 1− q} the equation ∥eβ u(x,y)∥Q(y) = eγ(β,x) is[

q
1− q

]
=

[
p

1−e−2β d2
+ 1−p

1−e2β d1
1−p

1−e−2β d1
+ p

1−e2β d2

]
◦ Note that Q(y) → P (x) as β → ∞.

◦ One can check that Q(y1) +Q(y2) = 1.

◦ ∃β0 ≥ 0 such that Q(y1) < 0 or Q(y2) < 0 for β ∈ [0, β0):

β0 =
1

2d

∣∣∣∣ln( p

1− p

)∣∣∣∣
◦ I(β0) = 0 and U(β0) = c+ d|2p− 1| = U(I = 0).
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Computation of VoI The Mean-Square Case

Computation of VoI for Translation Invariant Utility

◦ Solutions to V (I) are optimal conditional probabilities of the form:

P (x | y) = eβu(x,y)−Γ0(β)

◦ For translation invariant u(x, y) = u(x+ a, y + a) one can show:

Γ0(β) = ln

∫
X
eβ u(x,y) dx

◦ β is the inverse temperature related to the constraint I(X,Y ) ≤ I:

β−1 =
dV (I)

dI

◦ Find U(I) from

U(β) =
dΓ0(β)

dβ
, I(β) = H(X)− [Γ0(β)− βΓ′

0(β)]︸ ︷︷ ︸
H(X|Y )
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Computation of VoI The Mean-Square Case

Example: The Mean-Square Case (R. Belavkin, Pardalos, &
Principe, 2023)

◦ Let u(x, y) = −1
2 |x− y|2

◦ Optimal transition kernels are Gaussian

p(x | y) = e−β 1
2
|x−y|2−Γ0(β)

◦

Γ0(β) = ln

∫ ∞

−∞
e−β 1

2
|x−y|2 dx =

1

2
ln

2π

β

U(β) = Γ′
0(β) = − 1

2β

I(β) = H(X)− [Γ0(β)− β Γ′
0(β)] = H(X)− 1

2
ln

2π e

β

U(I) = − 1

4π e
e2[H(X)−I]

V (I) = U(I)− U(0) =
1

4π e
e2H(X)

(
1− e−2I

)
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Computation of VoI The Mean-Square Case

Minimum RMSE

◦ Using U(I) for u(x, y) = −1
2 |x− y|2:

RMSE(I) =
√

−2U(I) =
1√
2π e

eH(X)−I

◦ For x ∼ N (µ, σ2
x) we have H(X) = 1

2 ln(2π eσ2
x)

RMSE(I) = σx e
−I , R2(I) = 1− e−2I

(R. Belavkin et al., 2023)
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Applications of VoI

Example: Time-Series Prediction

Table: log-returns r(t) = log S(t+1)
S(t)

Date r(t − 2) r(t − 1) r(t) r(t + 1)
2019-01-06 -0.031 0.008 -0.011 0.064
2019-01-07 0.008 -0.011 0.064 -0.013
2019-01-08 -0.011 0.064 -0.013 -0.0034
2019-01-09 0.064 -0.013 -0.0034 -0.004

Jan 02
2019

Jul 01
2019

Jan 01
2020

Jul 01
2020

Jan 01
2021

Jul 01
2021

Jan 01
2022

BTC / USD log−returns 2019−01−02 / 2022−09−19

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

Predict r(t+ 1) from n lags of r(t):

f (r(t− n), . . . , r(t)) = y ≈ r(t+ 1)

Predict r(t+ 1) from n lags of r(t)
for m symbols:

f

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 = y ≈ r(t+1)

e.g. symbols: BTC/USD, ETH/USD, IOT/BTC, etc

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

A
C

F
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Applications of VoI

Estimation of Mutual Information

Table: log-returns r(t) = log S(t+1)
S(t)

Date r(t − 2) r(t − 1) r(t) r(t + 1)
2019-01-06 -0.031 0.008 -0.011 0.064
2019-01-07 0.008 -0.011 0.064 -0.013
2019-01-08 -0.011 0.064 -0.013 -0.0034
2019-01-09 0.064 -0.013 -0.0034 -0.004

◦ Mutual information I(X,Y ) ≤ I(X,Z) between response x and
predictors z.

◦ Here we use Gaussian formula:

IG(X,Z) =
1

2
[ln detKz + ln detKx − ln detKz⊕x] ≤ I(X,Z)

where Ki are covariance matrices.

◦ This is sufficient for linear models.
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Applications of VoI

Mutual Information in Training and Testing Sets
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◦ n ∈ [2 : 20] lags.

◦ m ∈ [1 : 5] symbols (BTC/USD, ETH/USD, DAI/BTC, XRP/BTC, IOT/BTC).

◦ Training / testing sets 100 / 25 days.
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1. Overview of the Value of Information (VoI) Theory
Motivation: Learning Systems
Example: Mean-Square Minimization
Variational Problems

2. Solution for Shannon’s VoI

3. Computation of VoI
The Binary Case
The Mean-Square Case

4. Applications of VoI
Performance of regression models
Performance of classification models
Performance of evolutionary systems

Roman Belavkin Data, Information and its Value May 24, 2024 32 / 52



Applications of VoI Performance of regression models

Model Performance

f

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 = y ≈ r(t+1)

 z11 · · · z1n
...

. . .
...

zm1 · · · zmn


︸ ︷︷ ︸

predictors

= y ≈ x︸︷︷︸
response

Jan 02
2019

Jul 01
2019

Jan 01
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Jul 01
2020

Jan 01
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Jul 01
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BTC / USD log−returns 2019−01−02 / 2022−09−19
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−0.2

−0.1

 0.0

 0.1

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

◦ Use n ∈ [2 : 20] lags and m ∈ [1 : 5] symbols (i.e. m× n ∈ [2 : 100]).

◦ Models: linear regression, partial-least squares, neural net.

◦ Root mean-square error

RMSE =
√
E{|x− y|2} , R2 = 1− RMSE2/σ2

x

◦ Is RMSE = .035 a good result? (R2 ≈ .05)

◦ What is the smallest possible RMSE here?
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Applications of VoI Performance of regression models

Evaluation of RMSE
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(R. Belavkin et al., 2023)
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Applications of VoI Performance of classification models
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Applications of VoI Performance of classification models

Example: Binary Classification and Prediction

Table: log-returns r(t) = log S(t+1)
S(t)

Date r(t − 1) r(t) signr(t + 1)
2019-01-06 0.008 -0.011 1
2019-01-07 -0.011 0.064 -1
2019-01-08 0.064 -0.013 -1
2019-01-09 -0.013 -0.0034 -1

Jan 02
2019

Jul 01
2019

Jan 01
2020

Jul 01
2020

Jan 01
2021

Jul 01
2021

Jan 01
2022

BTC / USD log−returns 2019−01−02 / 2022−09−19
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−0.1
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−0.3
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−0.1

 0.0

 0.1

Predict sign r(t+ 1) from n lags of
m symbols (e.g. BTC/USD, ETH/USD, IOT/BTC):

f

 r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 = y ≈ sign[r(t+1)]

Utility u(x, y) is a 2× 2 matrix
(confusion matrix):[

1 0
0 1

]
Questions:

Is Accuracy = .53 a good result?
What is the highest possible
accuracy here?
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Applications of VoI Performance of classification models

Evaluation of Accuracy
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(R. Belavkin et al., 2022)
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Applications of VoI Performance of evolutionary systems

Evolution as an Information Dynamic System

◦ EPSRC Sandpit ‘Math of Life’ (July, 2009):

◦ Three year project (2010–13)

◦ Followed by two BBSRC project.

Middlesex University : Roman Belavkin
University of Warwick : John Aston
University of Keele : Alastair Channon & Elizabeth Aston
University of Manchester : Chris Knight, Rok Krašovec & Danna

Gifford
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Applications of VoI Performance of evolutionary systems

Optimal Mutation Operator

◦ Optimal solutions achieving V (I) have exponential form, such as:

Pβ(b | a) =
e−β d(a,b)∑
z e

−β d(a,b)

◦ β is called inverse temperature, and it is the Lagrange multiplier
related to the information constraint:

I{a, b} ≤ I

◦ The temperature β−1 is the slope of V (I):

β−1 =
dV (I)

dI
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Applications of VoI Performance of evolutionary systems

Special Case: Hamming Space

Example (Hamming metric)

DNA sequences of length l and alphabet {1, . . . , α} are elements of
Hamming space Hl

α := {1, . . . , α}l with Hamming metric

dH(a, b) = ∥a− b∥H = l −
l∑

i=1

δai(bi)

Solution

Pβ(b | a) =
e−β ∥a−b∥H

[1 + (α− 1)e−β]l
=

l∏
i=1

e−β (1−δai (bi))

1 + (α− 1)e−β

The constraint E{r} ≤ υ on r = ∥a− b∥H defines
β = ln

(
µ−1 − 1

)
+ ln(α− 1), where µ = υ/l is the mutation rate.
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Applications of VoI Performance of evolutionary systems

Optimal mutation rate control functions in H10
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Belavkin, R. V., Channon, A., Aston, E., Aston, J., Krasovec, R., Knight, C. G. (2016).
Monotonicity of Fitness Landscapes and Mutation Rate Control. Journal of
Mathematical Biology, Vol. 73:6, pp 1491–1524, Springer.
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Applications of VoI Performance of evolutionary systems

Expected Fitness in Time
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Applications of VoI Performance of evolutionary systems

Evolution of Fitness in Information
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Applications of VoI Performance of evolutionary systems

Fitness Variance and Expectation
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Applications of VoI Performance of evolutionary systems

Mutation Rate Control in E. coli

◦ Used strains of Escherichia coli K-12 MG1665

◦ Fluctuation test using media 50µg/ml of Rifamipicin

◦ Estimated mutation rates µ in E.coli strains grown in Davis minimal
medium with different amount of glucose.
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Applications of VoI Performance of evolutionary systems

Experimental Results (Krašovec et al., 2014)

13 14 15 16
Absolute fitness (gens/day)

◦ Strong relationship between µ and density of cells (p < .0001).

◦ No such relationship in the luxS quorum sensing mutant (p = .0234).

Krašovec, R., Belavkin, R., Aston, J., Channon, A., Aston, E., Rash, B., Kadirvel, M.,
Forbes. S., Knight, C. G. (2014, April). Mutation-rate-plasticity in rifampicin resistance
depends on Escherichia coli cell-cell interactions. Nature Communications, Vol. 5 (3742).
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Experimental Results (Krašovec et al., 2014)
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Krašovec, R., Belavkin, R., Aston, J., Channon, A., Aston, E., Rash, B., Kadirvel, M.,
Forbes. S., Knight, C. G. (2014, April). Mutation-rate-plasticity in rifampicin resistance
depends on Escherichia coli cell-cell interactions. Nature Communications, Vol. 5 (3742).

Roman Belavkin Data, Information and its Value May 24, 2024 47 / 52
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Experimental Results (Krašovec et al., 2014)
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Applications of VoI Performance of evolutionary systems

Plastic mutation rates in bacteria (Krašovec et al., 2017)

◦ rifampicin (triangles)

◦ nalidixic acid in E.coli
(dark circles) and in P.
aeruginosa (light circles)

Krašovec, R., Richards, H., Gifford, D. R., Hatcher, C., Faulkner, K. J., Belavkin, R. V.,
Channon, A., Aston, E., McBain, A. J., Knight, C. G. (2017). Spontaneous mutation
rate is a plastic trait associated with population density across domains of life. PLoS
Biology, 15:8.
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Applications of VoI Performance of evolutionary systems

Plastic mutation rates in yeast (Krašovec et al., 2017)

◦ hygromycin B (squares)
in S. cerevisiae

◦ 5-FOA (diamonds)

Krašovec, R., Richards, H., Gifford, D. R., Hatcher, C., Faulkner, K. J., Belavkin, R. V.,
Channon, A., Aston, E., McBain, A. J., Knight, C. G. (2017). Spontaneous mutation
rate is a plastic trait associated with population density across domains of life. PLoS
Biology, 15:8.
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Applications of VoI Performance of evolutionary systems

Plastic rates in all domains of life (Krašovec et al., 2017)

>70 years of
published data
(1943–2016), 67
studies, 26
species.

Krašovec, R., Richards, H., Gifford, D. R., Hatcher, C., Faulkner, K. J., Belavkin, R. V.,
Channon, A., Aston, E., McBain, A. J., Knight, C. G. (2017). Spontaneous mutation
rate is a plastic trait associated with population density across domains of life. PLoS
Biology, 15:8.
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Applications of VoI Performance of evolutionary systems

Conclusions

◦ Presented basic ideas of the value of information theory.

◦ Used the binary and the mean-square cases to derive formulae for the
minimum RMSE and the maximum accuracy of a model as function
of information.

◦ VoI gives additional tools to evaluate model performance.

◦ The theory provides some deep insights into random phenomena,
learning and decisions under uncertainty.

◦ Control of parameters (mutation rates, learning rates, annealing
schedule, exploration-exploitation balance, etc).
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