On embedding of two-dimensional separatrices of saddle equilibria in four-dimensional manifolds

E.Y. Gurevich, I.A. Saraev

15 December 2023

Gradient-like flows

Let M^n be a closed connected smooth manifold of dimension $n \ge 1$. A smooth map $F : M^n \times \mathbb{R} \to M^n$ such that:

1.
$$F(x,0) = x$$
 for any $x \in M^n$;

2.
$$F(F(x,s),t) = F(x,s+t)$$
 for any $x \in M^n$, $s, t \in \mathbb{R}$

is called a smooth flow. It is usually denoted $F(x, t) = f^t(x)$. A smooth flow $f^t: M^n \to M^n$ is called gradient-like if its non-wandering set Ω_{f^t} consists of a finite number of hyperbolic equilibria and invariant manifolds of equilibria transversally intersect each other. We will say that a hyperbolic equilibrium p is of type (i, n - i) if dim $W_p^u = i$. Let $G(M^n)$ be a class of gradient-like flows on M^n such that for any flow f^t invariant manifolds of different saddles do not intersect each other.

History of the issue

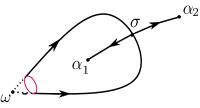


Mayer A. G., *Rough transformation of the circle*, Uchenye zapiski GGU, 1939, V. 12, p. 215-229.

Leontovich E. A., Mayer A. G., On trajectories that determine the qualitative structure of the partition of a sphere into trajectories, Rep. Acad. Sci. USSR, 1937, V. 14, No. 5, p. 251–257.

Peixoto M. M., *On the classification of flows on 2-manifolds*, in: Dynamical Systems, Proc. Sympos. Univ., Bahia, Salvador, 1971, p. 389-419.

History of the issue



Umanskiy Y. L., Necessary and sufficient conditions for topological equivalence of three-dimensional Morse-Smale dynamical systems with a finite number of singular trajectories, Math. USSR-Sb., 1991 V. 69, No. 1, p. 227–253.

Grines V. Z., Gurevich E. Y., *Combinatorial invarian* for gradient-like flows on the connected sum $\mathbb{S}^{n-1} \times \mathbb{S}^{2}$ Matematicheskiy sbornik, 2023, V. 214, No. 5, p. 97-127.

(日) (四) (日) (日) (日)

Fundamental impossibility of combinatorial classification for the class $G(M^n)$, $n \ge 4$

Proposition

There are non-equivalent flows f^t , $f'^t \in G(M^n)$ with three states of equilibria, $n \in \{8, 16\}$

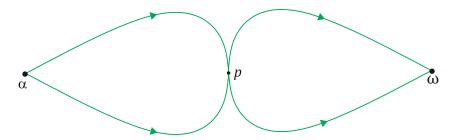


Figure: A gradient-like flow with wildly embedded two-dimensional separatrix

Eells J., Kuiper N., *Manifolds which are like projective planes*, Institut des Haute studes Scientifiques Publications Mathematiques, 1962, V. 14, Pr 5–46: \equiv + $< \equiv$ + <

Fundamental impossibility of combinatorial classification for the class $G(M^n)$, $n \ge 4$

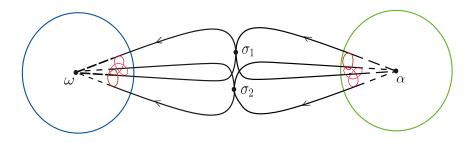


Figure: A gradient-like flow with wildly embedded two-dimensional separatrix

Zhuzhoma E. V., Medvedev V. S., *Morse-Smale systems with few* non-wandering points, Topology and its Applications, 2013, V. 160(3), P. 498 -507.

Flows with only one saddle of type (2,2)

We consider a subclass $G_1(M^4)$ of $G(M^4)$ such that for any flow $f^t \in G_1(M^4)$ there is only one saddle of type (2, 2).

Theorem

An ambient manifold M^4 of any flow $f^t \in G_1(M^4)$ is homeomorphic to a connected sum of a finite number of copies of $\mathbb{S}^1 \times \mathbb{S}^3$ and \mathbb{CP}^2 if and only if f^t carries only one saddle of type (2,2).

Grines V.Z., Zhuzhoma E.V., Medvedev V.S., *On the structure of the ambient manifold for Morse-Smale systems without heteroclinic intersections*, Trudy Matematicheskogo instituta im. V. A. Steklova RAN, 2017, V. 297, p. 201-210.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Topology of embeddings of separatrices of flows from $G_1(M^4)$

Let $f^t \in G_1(M^4)$, $\sigma^i \in \Omega_{f^t}$ be a saddle of type (i, n - i), $i \in \{2, 3\}$. Then there is a unique sink equilibrium ω such that $\mathrm{cl}W^u_{\sigma^i} = W^u_{\sigma^i} \cup \{\omega\}$.

Lemma

Let $f^t \in G_1(M^4)$. Then:

- for i = 3 the set clW^u_{σ³} is a locally flat three-dimensional sphere;
- for i = 2 the set $clW^u_{\sigma^2}$ is a locally flat two-dimensional sphere.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Combinatorial classification for the class $G_1(M^4)$

Theorem

Classes of topological equivalence of flows from $G_1(M^4)$ can be described in combinatorial terms.

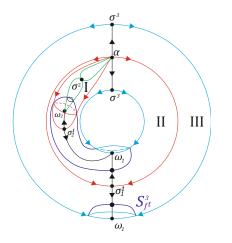


Figure: Bicolor graph of the flow f^t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00