• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Group theory

2019/2020
Academic Year
RUS
Instruction in Russian
6
ECTS credits

Instructors

Программа дисциплины

Аннотация

Дисциплина "Теория групп" является продолжением курса алгебры. Дисциплина направлена на знакомство с основными разделами теории групп и освоение методов решения задач по теории групп. В курсе изложены базовые определения, примеры и теоремы теории групп.
Цель освоения дисциплины

Цель освоения дисциплины

  • Освоение фундаментальных понятий и результатов теории групп
  • Формирование умений и навыков в решении задач по теории групп
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать основные определения и утверждения теории групп.
  • Уметь решать задачи теории групп
  • Уметь доказывать основные результаты теории групп
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Группы.
    Определение группы, подгруппы. Порядок элемента. Циклические группы. Гомоморфизмы групп. Ядро, образ гомоморфизма. Смежные классы по подгруппе. Нормальные подгруппы. Факторгруппа. Теоремы о гомоморфизмах групп.
  • Действие группы на множестве.
    Орбиты, стабилизаторы. Формула длины орбиты. Формула разложения на орбиты. Классы сопряженных элементов, формула классов. Действие сопряжениями и левыми сдвигами. Центр группы.
  • р-группы, разрешимые и простые группы.
    p-группы. Теоремы Силова. Группы порядка pq. Коммутант группы. Разрешимые и простые группы.
  • Задание группы образующими и соотношениями.
    Внешнее, внутреннее прямое произведение групп. Разложимые группы. Разложимость конечной циклической группы. Свободные группы. Универсальное свойство свободной группы. Задание группы образующими и соотношениями.
  • Конечные абелевы группы.
    Конечные абелевы группы. Примарные группы. Элементарные делители примарной группы. Число неизоморфных примарных групп порядка pn. Коэффициенты кручения конечной абелевой группы.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
  • неблокирующий Устный экзамен
    Экзамен проводится в устной форме (опрос по материалам курса). Экзамен проводится на платформе MS Teams (https://teams.microsoft.com). К экзамену необходимо подключиться согласно расписанию ответов, высланному преподавателем на корпоративные почты студентов накануне экзамена. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка MS Teams. Для участия в экзамене студент обязан: поставить на аватар свою фотографию, явиться на экзамен согласно точному расписанию, при ответе включить камеру и микрофон. Во время экзамена студентам запрещено: выключать камеру, пользоваться конспектами и подсказками. Кратковременным нарушением связи во время экзамена считается нарушение связи до 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (3 модуль)
    0.3 * Контрольная работа + 0.7 * Устный экзамен
  • Промежуточная аттестация (4 модуль)
    0.15 * Контрольная работа + 0.5 * Промежуточная аттестация (3 модуль) + 0.35 * Устный экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • - Ляпин Е.С., Айзенштат А.Я., Лесохин М.М. — Упражнения по теории групп - Издательство "Лань" - 2010 - ISBN: 978-5-8114-1015-6 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/528
  • Алгебра, учебник для студентов-математиков, Ч. 1, 485 с., Городенцев, А. П., 2013
  • Сборник задач по алгебре, учебное пособие : в 2 т., Т. 1, под ред. А. И. Кострикина, 264 с., , 2007
  • Сборник задач по алгебре, учебное пособие : в 2 т., Т. 2, под ред. А. И. Кострикина, 168 с., , 2007

Рекомендуемая дополнительная литература

  • - Винберг Э.Б. — Курс алгебры - Московский центр непрерывного математического образования - 2013 - ISBN: 978-5-4439-2013-9 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/56396
  • - Каргаполов М.И., Мерзляков Ю.И. — Основы теории групп - Издательство "Лань" - 2009 - ISBN: 978-5-8114-0894-8 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/177
  • - Курош А.Г. — Теория групп - Издательство "Физматлит" - 2011 - ISBN: 978-5-9221-1349-6 - Текст электронный // ЭБС Лань - URL: https://e.lanbook.com/book/59755
  • Введение в алгебру, учебник, Ч. 1, 2-е изд., испр., 272 с., Кострикин, А. И., 2001
  • ведение в алгебру, учебник, Ч. 3, 2-е изд., испр., 272 с., Кострикин, А. И., 2001