Программа учебной дисциплины «Моделирование процессов и систем»

Утверждена Академическим руководителем	
20	

Автор	Асеева Н.В., к.фмн., доцент
Число кредитов	8
Контактная ра-	36
бота (час.)	
Самостоятельная	268
работа (час.)	
Курс	2
Формат изуче-	без использования онлайн курса
ния дисциплины	

І. ЦЕЛЬ, РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПРЕРЕКВИЗИТЫ

Целями освоения дисциплины «Моделирование процессов и систем» являются формирование у студентов четкого представления места и роли информационного моделирования в решении актуальных задач по управлению информацией, анализ сложившейся в этой области терминологии, системных научных подходов к моделированию, проектированию и реализации сложных программных комплексов, получение знаний и навыков владения инструментами моделирования, обучение перспективным информационным технологиям и методам решения проблем внедрения и применения информационных систем.

В результате освоения дисциплины студент должен:

знать:

- сложившуюся в отечественной и зарубежной практике терминологию информационного моделирования, информационных систем, виды информации, циркулирующей в организации;
- роль различных видов информации в достижении стратегических целей организации;
- основные типы информационных систем, их архитектуру, функции и принципы использования в организации;
- основные информационные технологии и методы, влияющие на принципы разработки информационных систем;

уметь:

• полученные знания к решению вопросов выбора соответствующих информационных технологий и принципов разработки программного обеспечения в зависимости от конкретных информационных проблем и особенностей предприятий;

владеть:

- навыками формального представления процессов управления информацией и их автоматизации в рамках существующих информационных систем, определения требований к функциональности информационной системы и организации процесса ее разработки;
- навыками применения различных инструментов и методов моделирования и автоматизации процессов и описания информационных систем для решения различных проблем, возникающих в организации.

Изучение дисциплины «Моделирование процессов и систем» базируется на следующих дисциплинах:

- Программирование;
- Дискретная математика.

Для освоения учебной дисциплины студенты должны владеть следующими знаниями и компетенциями:

- владеть навыками программирования;
- обладать навыками дискретной математики.

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

- 1. архитектура предприятия,
- 2. управление ИТ проектами,
- 3. имитационное моделирование,
- 4. анализ и совершенствование бизнес-процессов,
- 5. корпоративные информационные системы.

ІІ. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Раздел 1. Введение

Тема 1.1 Основные понятия теории моделирования.

Понятия данных, информации и знаний. Модели и моделирование. Общие определения. Принципы и правила моделирования.

Раздел 2. Моделирование бизнес-процессов

Тема 2.1 Процессный подход к организации управления предприятием. Понятие бизнес-процесса.

Процессный подход и современные системы управления организацией. Определение бизнес-процесса. Бизнес-процессы в организации: характеристики и классификация. Состав этапов типового проекта моделирования и реорганизации бизнес-процессов.

Тема 2.2 Основные подходы и стандарты моделирования бизнес-процессов

Поколения средств моделирования бизнес-процессов. Основные стандарты моделирования: SADT, IDEF, DFD, ARIS, UML, BPML, BPEL, BPML.

Тема 2.3 Структурный подход к построению бизнес-модели

Метод структурного анализа и проектирования: назначение и особенности. Методология IDEF0, IDEF3, IDEF1X. Программные средства моделирования бизнес-процессов в стандартах SADT и IDEF

Тема 2.4 Нотация моделирования бизнес-процессов BPMN.

Введение в стандарт BPMN, основные элементы нотации: события, действия, шлюзы, данные, артефакты и организационные аспекты. Подпроцессы, транзакции, циклические задачи. Оркестровка, межпроцессное взаимодействие, хореография. Инструментальные средства поддержки моделирования процессов в нотации BPMN.

Тема 2.5 Методология и средства моделирования ARIS

Базовая модель бизнес-процессов в ARIS. Разработка архитектуры интегрированных информационных систем (здание ARIS). Value-added Chain Diagram (ARIS VAD). Нотация ARIS eEPC. Нотация ARIS Organizational Chart. Нотация Functional Tree. Нотация Product Tree. Нотация Informational Flow.

Tema 2.6 Использование унифицированного языка UML для проектирования сложных программных систем

Введение в UML. Назначение языка UML. Концептуальная модель UML. Диаграммы UML. Построение диаграмм: диаграмма вариантов использования, диаграмма взаимодействия,

диаграмма деятельности, диаграмма состояний, диаграмма классов. Существующие инструментальные средства, использующие стандарты моделирования. Понятие CASE-технологии. Достоинства и недостатки CASE-технологий.

Тема 2.7 Инструментальные средства автоматизации бизнес-процессов: WFMS, КИС

Workflow reference architecture WFMS. Назначение, особенности, примеры систем. Особенности автоматизации бизнес-процессов на примере системы Joget. Концепции управления и классы информационных систем: MRP, CRP, MRPII, ERP, CRM, PLM.

Раздел 3. Компоненто-ориентированное моделирование сложных систем в среде Open Modelica

Назначение языка Modelica и история развития. Реализация системного подхода в языке Modelica. Примеры практической реализации. Возможности и ограничения реализации языка Modelica в среде моделирования OpenModelica. Высокоуровневый дизайн среды OpenModelica. Обзор возможностей компонента OMEdit. Синтаксис и семантика языка Modelica. Объектно-ориентированный подход к разработке вычислительных моделей в среде OpenModelica. Управляющие структуры языка Modelica.

Раздел 4. Имитационное моделирование

Тема 4.1 Основные положения и подходы к имитационному моделированию

Роль и место имитационного моделирования в задачах бизнес-анализа. Использование имитационных моделей для принятия управленческих решений. Основные положения имитационного моделирования. Вероятностные и детерминированные модели.

Тема 4.2 Знакомство с инструментальной средой имитационного моделирования Arena

Основная функциональность учебной версии системы ARENA. Базовые и расширенные блоки системы. Модельное и реальное время. Конфигурирование панели пуска. Виды отчетов. Запуск тестовой имитационной модели в среде ARENA.Интерпретация результатов.

III. ОЦЕНИВАНИЕ

Контроль знаний студентов включает формы текущего и итогового контроля. По курсу предусмотрены текущий контроль знаний и работы студентов на практических занятиях, 3 контрольные работы, домашнее задание.

Преподаватель оценивает работу студентов на практических занятиях по следующим направлениям: активность выступлений на занятиях; участие в дискуссиях, бизнес играх и кейсах; подготовленность студента к занятиям (выполнение получаемых заданий на самостоятельное изучение). Результирующая оценка по 10-ти балльной шкале за работу на практических занятиях определяется перед текущим контролем

Накопленная оценка за текущий контроль учитывает результаты студента по текущему контролю следующим образом:

$$O_{\text{накопленная}} = 0.3 * O_{\text{Д/3}} + 0.1 * O_{\text{эссе}} 0.2 * O_{\text{ауд.м2}} + 0.2 * O_{\text{ауд.м3}} + 0.2 * O_{\text{ауд.м4}}$$

Аудиторная оценка выставляется за каждый модуль по отдельности и высчитывает на основе следующих критериев:

$$O_{ay\partial.} = 0.5 * O_{ayд.} + 0.5 * O_{K/p}$$

Результирующая оценка за итоговый контроль в форме экзамена выставляется по сле- дующей формуле:

$$O_{umoz} = 0.7 * O_{hakonлehhaa} + 0.3 * O_{3k3ameh}$$

Способ округления оценок - арифметический, в пользу студента.

В диплом ставится оценка за итоговый контроль, которая является результирующей оценкой по учебной дисциплине.

IV. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ

Оценочные средства для промежуточной аттестации

- 1. Эволюция информационных систем
- 2. Понятие бизнес-процесса.
- 3. Жизненный цикл бизнес-процесса
- 4. Нотация ВРМN. Основные элементы нотации. Приведите примеры.
- 5. События в BPMN. Типы поведения событий. Маркеры событий в BPMN. Приведите примеры. В экзаменационном билете нужно будет привести пример событий определенного типа. Особое внимание обратить на события, рассматривавшиеся на лекции (Escalation, Compensation, Termination)
- 6. Действия в BPMN. Маркеры действий. Приведите примеры. В экзаменационном билете нужно будет привести пример действия определенного типа. Особое внимание обратить на действия, рассматривавшиеся на лекции (Ad-hoc, Transaction)
- 7. Шлюзы в BPMN. Маркеры шлюзов. Приведите примеры. В экзаменационном билете нужно будет привести пример шлюза определенного типа.
- 8. Данные, артефакты и организационные аспекты на диаграмме BPMN.
- 9. Хореография бизнес-процессов. Причины построения диаграмм хореографии
- 10. Фазы разработки и имплементации хореографии. Приведите примеры диаграмм хореографии, получаемых на разных фазах разработки имплементации хореографии.
- 11. Структурная и поведенческая совместимость участников в рамках заданной хореографии. Приведите примеры.
- 12. WFMS. Назначение, особенности, примеры систем
- 13. Workflow reference architecture
- 14. Методология ARIS. ARIS House. Нотация EPC. Правила построения диаграмм EPC. Приведите пример диаграммы в нотации EPC.
- 15. Язык моделирования UML. Назначение. Особенности. Основные диаграммы UML.
- 16. Диаграмма вариантов использования. Основные элементы и их изображение. Правила

построения. Приведите пример диаграммы вариантов использования.

- 17. Диаграмма действий (активностей). Основные элементы и их изображение. Правила построения. Приведите пример диаграммы активностей.
- 18. Диаграмма классов. Основные элементы и их изображение. Правила построения. Приведите пример диаграммы классов.
- 19. Диаграмма последовательности. Основные элементы и их изображение. Правила построения. Приведите пример диаграммы последовательности.

V. РЕСУРСЫ

5.1 Основная литература

- 1. Чикуров, Н.Г. Моделирование систем и процессов [Электронный ресурс]: учебное пособие / Н.Г.Чикуров; ЭБС Znanium. М.: ИЦ РИОР: НИЦ ИНФРА-М, 2013. 398 с. (Высшее образование: Бакалавриат). Режим доступа: http://znanium.com/bookread2.php?book=392652. Загл. с экрана.
- 2. Моделирование систем и процессов [Электронный ресурс]: учебник для академического бакалавриата / под ред. В.Н.Волковой, В.Н.Козлова; ЭБС Юрайт. М.: Юрайт, 2017. 450 с. (Бакалавр. Академический курс). Режим доступа: https://www.biblioonline.ru/viewer/E7D370B9-3C64-4A0F-AF1B-F6BD0EEEBCD0#page/1. Загл. с экрана. Гриф УМО ВО

5.2 Дополнительная литература

- 1. Гармаш, А.Н. Экономико-математические методы и прикладные модели [Электронный ресурс]: учебник для бакалавриата и магистратуры / А. Н.Гармаш, И.В.Орлова, В.В.Федосеев; под ред. В.В.Федосеева; ЭБС Юрайт. 4-е изд., перераб. и доп. М.: Юрайт, 2016. 328 с. (Бакалавр и магистр. Академический курс). ISBN 978-5-9916-3874-6. Режим доступа: https://www.biblio-online.ru/viewer/E84ED10F-2442-49D6-86D0-69C9EF72BEB8#page/1. Загл. с экрана. Гриф УМО ВО
- 2. Моделирование систем и процессов. Практикум [Электронный ресурс]: учебное пособие для академического бакалавриата / под ред. В.Н.Волковой; ЭБС Юрайт. М.: Юрайт, 2017. 295 с. (Бакалавр. Академический курс). Режим доступа: https://www.biblio-online.ru/viewer/3DF77B78-AF0B-48EE-9781-D60364281651#page/1. Загл. с экрана. Гриф УМО ВО
- 3. Лодон, Д. Управление информационными системами: учебник / Д.Лодон, К.Лодон; пер. с англ. А.П.Сергеева. СПб.: Питер; IMISP, 2005.
- 4. Приемы объектно-ориентированного проектирования: паттерны проектирования / Э.Гамма, Р.Хелм, Р.Джонсон, Дж.Влиссидес. СПб.: Питер, 2004.
- 5. Бабкин, Э.А. Архитектура и технология использования современных ERP-систем на примере систем с открытым кодом: учебное пособие. Нижний Новгород: Изд-во НГТУ, 2007.
- 6. Бабкин, Э.А. Архитектура и технология использования современных ERP-систем на примере систем с открытым кодом: учебное пособие / Э.А.Бабкин, О.Р.Козырев, О.Е.Полухина; Гос. ун-т Высшая школа экономики, Нижегород. ф-л. Нижний Новгород: Изд-во НГТУ, 2006.
- 7. Цимбал, А. А. Технологии создания распределенных систем / А. А. Цимбал, М. Л. Аншина. СПб.: Питер, 2003.

5.3 Программное обеспечение

№ п/п	Наименование	Условия доступа
1.	Microsoft Office 2013 Prof + Microsoft Visio 2013 Prof	Государственный контракт
2.	Open Modelica Arena	Из внутренней сети университета

5.4 Профессиональные базы данных, информационные справочные системы, интернет-ресурсы (электронные образовательные ресурсы)

№ п/п	Наименование	Условия доступа	
	Профессиональные базы данных, информационно-справочные системы		
1.	Электронно-библиотечная система Юрайт	URL: https://biblio-online.ru/	

5.5 Материально-техническое обеспечение дисциплины

Учебные аудитории для лекционных занятий по дисциплине обеспечивают использование и демонстрацию тематических иллюстраций, соответствующих программе дисциплины в составе:

- ПЭВМ с доступом в Интернет (операционная система, офисные программы, антивирусные программы);
 - мультимедийный проектор с дистанционным управлением.

Практические занятия проводятся в компьютерном классе.с возможностью подключения к сети Интернет и доступом к электронной информационно-образовательной среде НИУ ВШЭ.