Программа учебной дисциплины «Эконометрика»

з твержоени Академическим руководителем
пкаосни теским рукововителем
Н.В. Асеева
20

Автор	Максимов А.Г.
Число кредитов	4
Контактная ра-	24
бота (час.)	
Самостоятельная	128
работа (час.)	
Курс	2 курс
Формат изуче-	без использования онлайн курса
ния дисциплины	

І. ЦЕЛЬ, РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ И ПРЕРЕКВИЗИТЫ

Целями освоения дисциплины «Эконометрика» являются овладение основами построения и оценки регрессионных уравнений.

В результате освоения дисциплины студент должен:

знать:

- терминологию, принятую в изучаемой дисциплине, ее основные понятия и определения:
- основные теоретические факты и практические методы оценки эконометрических моделей;

уметь:

- применять на практике изученные методы и модели;

владеть:

- навыками (приобрести опыт) математической формализации поставленной задачи, производить оценку составленной модели, интерпретировать полученное решение в терминах исходной задачи.

Изучение дисциплины «Эконометрика» базируется на следующих дисциплинах:

- Математический анализ;
- Теория вероятностей и математическая статистика.

II. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

<u>Раздел 1. Предмет эконометрики. Методология эконометрического исследования.</u> Предмет эконометрики. Методология эконометрического исследования. Математическая и эконометрическая модель. Три типа экономических данных: временные ряды, перекрестные (cross-section) данные, панельные данные.

Раздел 2. Классическая линейная регрессия.

Метод наименьших квадратов, оценка дисперсии шума, теорема Гаусса-Маркова, коэффициент детерминации, тест на значимость регрессии в целом, проверка гипотез, тест Чоу, бинарные (фиктивные) объясняющие переменные, мультиколлинеарность.

Раздел 3. Нарушения предпосылок теоремы Гаусса-Маркова.

Гетероскедастичность, проверка на гомоскедастичность остатков, тест Уайта, тесты Парка, Глейзера, ранговой корреляции Спирмена, последствия гетероскедастичности, методы борьбы с проблемой гетероскедастичности. Взвешенный метод наименьших квадратов. Обобщенный метод наименьших квадратов и реализуемый обобщенный метод наименьших квадратов.

Автокорреляция, автокорреляция первого и высших порядков, проверка на автокорреляцию остатков, тест Дарбина-Уотсона, обобщенный метод наименьших квадратов для оценки регрессии при наличии автокорреляции, последствия автокорреляции, методы борьбы с проблемой автокорреляцией.

Раздел 4. Метод максимального правдоподобия.

Метод максимального правдоподобия, модели с бинарными зависимыми переменными (probit, logit модели), проблемы линейной регрессионной модели. Модели с дискретными зависимыми переменными (ordered logit, ordered probit, multinomial logit), цензурированные выборки, tobit, tobit II, процедура Хекмана корректировки самоотбора наблюдений в выборке.

Раздел 5. Проблема эндогенности.

Коррелированность регрессоров со случайной ошибкой. Причины эндогенности. Инструментальные переменные. Двухшаговый МНК.

Раздел 6. Системы уравнений.

Внешне не связанные уравнения. Системы уравнений. Структурная и приведенная формы. Проблема идентифицируемости. Косвенный метод наименьших квадратов.

III. ОЦЕНИВАНИЕ

Преподаватель оценивает работу студентов на практических занятиях путем оценивания правильности решения задач на практических занятиях, активности студентов на практических и лекционных занятиях. Оценки за работу на практических занятиях преподаватель выставляет в рабочую ведомость. Результирующая оценка по 10-ти балльной шкале за работу на семинарских и практических занятиях определяется перед итоговым контролем - Оаудиторная.

Преподаватель оценивает самостоятельную работу студентов путем оценки правильности выполнения аудиторных работ, наличия и полноты подготовленных скриптов для эконометрических пакетов. Оценка по 10-ти балльной шкале за самостоятельную работу определяется перед завершающим контролем - $O_{cam \cdot pa6otra}$.

Накопленная оценка по дисциплине рассчитывается по формуле:

$$O_{\text{накопленная}} = 0.5* O_{\text{аудиторная}} + 0.5* O_{\text{сам.работа}},$$

Переписывание контрольных работ не допускается.

Результирующая оценка за дисциплину выставляется по следующей формуле, где $O_{_{^{3} \kappa 3 a M e H}}$ — оценка за работу непосредственно на экзамене:

$$O_{
m peзульm} = 0, 4 \cdot O_{
m экзамен} + 0, 6 \cdot O_{
m накопл}$$
.

Результирующая оценка округляется арифметическим способом. Результирующая оценка выставляется в диплом.

IV. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ

Оценочные средства для текущего контроля студента

Залание 1

wage — заработная плата в тыс. руб.;

age — возраст в годах;

male — 1 если мужчина, 0 если женщина;

edu1 — 1 если среднее образование и ниже, 0 иначе;

edu2 — 1 если средне-специальное образование, 0 иначе;

edu3 — 1 если высшее образование, 0 иначе.

Ниже приведены результаты оценки уравнения Минсера в EViews.

Dependent Variable: LOG(WAGE)

Method: Least Squares

Date: 04/03/13 Time: 21:55

Sample: 1 450

Included observations: 450

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.510341	0.066174	22.82363	0.0000
AGE	0.006106	0.003443	1.773512	0.0768
(AGE^2)/100	-0.008564	0.004156	-2.060699	0.0399
EDU2	0.039299	0.018718	2.099495	0.0363
EDU3	0.102136	0.017331	5.893257	0.0000
MALE	0.055777	0.016589	3.362248	0.0008
R-squared	0.114540	Mean dependent var		1.662889
djusted R-squared 0.104569 S.D. dependent var		0.164916		
S.E. of regression	0.156056	Akaike info	criterion	-0.863964
Sum squared resid	10.81290	Schwarz crit	terion	-0.809174
Log likelihood	200.3920	F-statistic		11.48686
Durbin-Watson stat 2.03577		Prob(F-stati	stic)	0.000000

На основе данной информации ответьте на следующие вопросы.

- 1.Значима ли регрессия в целом? Ответ обоснуйте.
- 2. Можно ли утверждать, что заработная плата не меняется с возрастом? Ответ обоснуйте.
- 3. На сколько при прочих равных заработная плата людей со средне-специальным образованием выше, чем у людей со средним образованием? Значимо ли данная величина отличается от нуля? Ответ обоснуйте.
 - 4. Чему равно значение коэффициента детерминации?

Задание 2

Ниже приведены результаты оценки МНК регрессии по 103 наблюдениям. Проверьте гипотезу $H_0: \beta_2 = \beta_3 - 1$ в предположении о нормальном распределении шума.

$$(X'X)^{-1} = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 4 & 3 \\ 2 & 3 & 9 \end{pmatrix}, \quad X'Y = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \quad \sum_{i=1}^{N} e_i^2 = 50.$$

Оценочные средства для промежуточной аттестации

- 1. Линейная регрессионная модель для случая одной объясняющей переменной. Линейность регрессии по переменным и параметрам. Причины существования случайной составляющей. Случайная составляющая и остатки регрессии.
- 2. Задача оценивания параметров. Метод наименьших квадратов (МНК). Система
- нормальных уравнений и ее решение. Свойства оценок параметров, полученных по МНК, в том числе ортогональность остатков значениям независимой переменной и оцененным значениям зависимой переменой.
- 3. Коэффициент детерминации и его свойства. Связь между коэффициентом детерминации и коэффициентом корреляции. Выражение коэффициентов парной регрессии через статистические характеристики регрессора и регрессанта
- 4. Классическая линейная регрессия для случая одной объясняющей переменной. Статистические характеристики (математическое ожидание, дисперсия и ковариация) оценок параметров. Теорема Гаусса-Маркова.
- 5. Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Доверительные интервалы оценок параметров и проверка гипотез об их значимости (t-тест).
- 6.Предположение о нормальном распределении случайной ошибки в рамках классической линейной регрессии и его следствия. Проверка значимости регрессии (F-тест).
- 7. Множественная линейная регрессия в скалярной и векторной формах. Матричное выражение для вектора оценок коэффициентов регрессии. Идея вывода.
- 8. Ковариационная матрица оценок коэффициентов регрессии. Несмещенная оценка дисперсии случайного члена. Оценка ковариационной матрицы оценок коэффициентов регрессии.
- 9. Теорема Гаусса-Маркова для множественной линейной регрессии. Распределение оценок коэффициентов регрессии при известной дисперсии случайной составляющей. Проверка значимости коэффициентов для множественной линейной регрессионной модели (случай нормальной случайной составляющей).
- 10. Проверка значимости регрессии для множественной линейной регрессионной модели (случай нормальной случайной составляющей). Коэффициент множественной детерминации и коэффициент множественной детерминации, скорректированный на число степеней свободы. Связь между коэффициентом множественной детерминации и F-отношением.
- 11.Построение множественной линейной регрессии с ограничениями на параметры. Формулировка общей линейной гипотезы (наличия нескольких линейных соотношений между параметрами теоретической регрессии). Конкретные примеры ограничений. Формулировка гипотез и их проверка.
- 12. Функциональные преобразования переменных в линейной регрессионной модели.
- 13. Проблема однородности данных. Качественные объясняющие переменные. Фиктивные (dummy) переменные во множественной линейной регрессии. Анализ сезонности. Преимущество использования dummy-переменных. Тест на структурные изменения (тест Chow).

- 14. Метод максимального правдоподобия (ММП). Свойства оценок ММП.
- 15. Мультиколлинеарность данных и последствия этого для оценок параметров регрессионной модели. Идеальная и практическая мультиколлинеарность (квазимультиколлинеарность). Показатели степени мультиколлинеарности.
- 16. Нарушение гипотезы о гомоскедастичности. Возможные причины гетероскедастичности. Последствия гетероскедастичности. Признаки гетероскедастичности. Поправки Уайта. Взвешенный метод наименьших квадратов при известных дисперсиях случайных составляющих в различных наблюдениях. Оценивание коэффициентов множественной линейной регрессии в условиях гетероскедастичности.
- 17. Нарушение гипотезы о гомоскедастичности. Возможные причины гетероскедастичности. Последствия гетероскедастичности. Поправки Уайта. Взвешенный метод наименьших квадратов при известных дисперсиях случайных составляющих в различных наблюдениях. Теорема Айткена. GLS, FGLS. Двухшаговый метод наименьших квадратов.
- 18.Понятие об автокорреляции случайной составляющей. Экономические причины автокорреляции. Авторегрессионная схема 1-го порядка (Марковская схема). Следствие неучета автокорреляции для оценок МНК.
- 19.Понятие об автокорреляции случайной составляющей. Диагностирование автокорреляции. Статистика Дарбина-Уотсона. Обобщенный метод наименьших квадратов для оценки регрессии при наличии автокорреляции и известном значении параметра.
- 20. Модели с дискретной зависимой переменной. Проблемы линейной регрессионной модели. Вероятностная интерпретация. Модели бинарного выбора. Logit- Probit-модели. Интерпретация коэффициентов.
- 21.Метод максимального правдоподобия для оценки параметров в Logit-Probit-моделях.
- 22. Понятие о моделях множественного выбора и моделях с урезанными и цензурированными выборками (Tobit-модель, Tobit-II).
- 23. Эндогенность. Инструментальные переменные. Двухшаговый метод наименьших квадратов.
- 24. Внешне не связанные уравнения. Системы уравнений. Проблема идентификации.

V. РЕСУРСЫ

5.1 Основная литература

1. 1. Вербик, М. Путеводитель по современной эконометрике: учебно-методическое пособие / М.Вербик; пер. с англ. В.А.Банникова; науч. ред. и предисл. С.А.Айвазяна. - М.: Научная книга, 2008. - 616 с. - (Библиотека Солев). Гриф МО РФ

5.2 Дополнительная литература

- 1. Доугерти, К. Введение в эконометрику: учебник: пер. с англ. / К.Доугерти. М.: ИНФРА-М, 1999. XIV, 402 с. (Университетский учебник).
- 2. Магнус, Я.Р. Эконометрика. Начальный курс / Я.Р. Магнус, П.К. Катышев, А.А. Пасецкий. М.: Дело, 2007. Гриф МО РФ
- 3. Аистов, А.В. Эконометрика шаг за шагом: учебное пособие / А.В.Аистов, А.Г.Максимов. М.: Изд. Дом. ГУ ВШЭ, 2006. Гриф МО РФ
- 4. Айвазян, С.А. Прикладная статистика и основы эконометрики / С.А.Айвазян, В.С.Мхитарян. М. ЮНИТИ, 1998.

- 5. Катышев, П.К. Сборник задач к начальному курсу эконометрики / П.К.Катышев, Я.Р.Магнус, А.А.Пересецкий. 3-е изд.; испр. М.: Дело, 2003. 208 с.
- 6. Greene, W.H. Econometric Analysis / W.H.Greene.- 7th ed.; international edition.- Boston : PEAR-SON, 2012.
- 7. Verbeek, M. A Guide to Modern Econometrics / M. Verbeek. 2nd ed. Hoboken, USA: JOHN WILEY & SONS, 2006.

5.3 Программное обеспечение

№ п/п	Наименование	Условия доступа
1.	Stata/SE 11	Из внутренней сети университета (договор)
2.	Microsoft Office 2013 Prof +	Государственный контракт

5.4 Профессиональные базы данных, информационные справочные системы, интернет-ресурсы (электронные образовательные ресурсы)

№ п/п	Наименование	Условия доступа			
	Профессиональные базы данных, информационно-справочные системы				
1.	Электронно-библиотечная система Юрайт	URL: https://biblio-online.ru/			
2.	Электронные ресурсы библиотеки НИУ ВШЭ	URL: http://library.hse.ru/e-resources/e-resources.htm			
	Интернет-ресурсы (электронные образовательные ресурсы)				
1.	Открытое образование	URL: https://openedu.ru/			

5.5. Материально-техническое обеспечение дисциплины

Занятия по дисциплине «Эконометрика» проводятся в аудиториях, оборудованных видеопроекционным оборудованием для презентаций, экраном, компьютером, имеющим выход в Интернет. Практические занятия проводятся в компьютерном классе, оборудованном мультимедийными средствами обучения.