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To the 85th anniversary of L.P. Shilnikov

This year, we celebrate the 85th anniversary of the birth of the outstanding Russian math-

ematician L.P. Shilnikov (1934-2011), and our joint conference "Topological Methods in Dy-

namics and Related Topics. Shilnikov WorkShop" is also devoted to this memorable date.

It has been 8 years since he passed away. However, the ideas of Shilnikov and his school

still have a very strong in�uence on his disciples and col-

leagues.Probably, this can explain the fact that over these

years they obtained a large number of signi�cant results

in the theory of dynamical systems, some of which can be

safely attributed as important discoveries. Some of these

achievements will be also discussed at the conference.

Leonid Pavlovich Shilnikov is one of the founders of the

mathematical theory of dynamical chaos and the theory

of global bifurcations of multidimensional systems. His

works are widely known in the world, and his results rec-

ognized as classical are included in all modern textbooks

on dynamical systems. He worked all his life in the Gorky

State University (now Lobachevsky University of Nizhny

Novgorod). He was a brilliant follower of the famous An-

dronov school on nonlinear dynamics and, in fact, he cre-

ated his own direction which is known nowadays as the

Shilnikov school on dynamical systems.

The scienti�c results by L.P. Shilnikov impress with their breadth and depth. Already in his

�rst works (in the 60's) he founded the base of the theory of global bifurcations of multidimensional

dynamical systems in quite nontrivial way generalizing the classical two-dimensional theory by An-

dronov and Leontovich. As one of the most signi�cant and impressive results of Shilnikov, one can

remark his discovery of the complex structure of orbits near a saddle-focus homoclinic loop. This

discovery actually marked the formation of the theory of spiral chaos, one of the famous kinds of
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dynamical chaos. Many of deep and pioneering results were obtained by L.P.Shilnikov in the theory

of homoclinic chaos including the complete solution of the Poincar�e-Birkho� problem on the struc-

ture of the set of orbits near a transverse homoclinic orbit to a saddle periodic orbit and to a saddle

invariant torus. Shilnikov regarded this result as a very important one, and he always stressed that

the existence of a transverse Poincar�e homoclinic orbit is the universal criterion of Chaos. Also it

is worth mentioning his discovery of the phenomenon of Ω-explosion (while studying bifurcations of

a system containing a saddle-saddle equilibrium with several homoclinic loops), as well as a series

of fundamental results on bifurcations of homoclinic tangencies obtained in collaboration with his

students N. Gavrilov, S. Gonchenko, and D. Turaev. The principally important place in the scien-

ti�c heritage of L.P. Shilnikov is occupied by his results on the structure of the Lorenz attractor

(obtained together with his students V. Afraimovich and V. Bykov) as well as his results (obtained

along with his students V. Afraimovich, A. Morozov and V. Lukyanov) which, in fact, form a solid

foundation of the modern mathematical theory of synchronization. It is necessary to note also the

fundamental contribution of Shilnikov to such branches of the theory of dynamical systems as the

theory of torus-chaos, the theory of pseudohyperbolic attractors, the theory of bifurcations of type

"blue sky catastrophe" and many others.

Let us point out that L.P. Shilnikov was never a�ected by �bourbakism�: the statements of his

theorems can always be easily veri�ed, and all the obtained results provide strong mathematical

tools which are widely used by �proper� specialists from various �elds of natural science.
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What I did in dynamics

L.M. Lerman

Dept. of Di�er. Equations, Calculus and Numerical Analysis

Lobachevsky State University of Nizhny Novgorod

I started in mathematics in 1969, if one means an o�cial presentation as a speaker on
the V International Conference in Nonlinear Oscillations in Kiev [1]. That concerned a gen-
eralization onto nonautonomous almost periodic systems of a result by L.S. Pontryagin [2]
on the dimension of the closure of an almost periodic orbit of a vector �eld given on a
n-dimensional smooth manifold. That talk and the paper in Proceedings was based on

my diploma paper made under the tutorship by L.P.
Shilnikov when graduating the Gorky State University in
1968. It was very funny that a rather close in topic talk
was presented by famous mathematician M.Cartwright at
the same conference.

After graduating Gorky State University I started
working in the Institute of Applied Mathematics and
Cybernetics in the Department of Di�erential Equations
headed by Prof. E.A. Leontovich-Andronova. The topic
of nonautonomous dynamics was continued in my PhD
thesis made under the tutorship by L.P.Shilnikov during
1971-1975 [3]. There were three main type of results in
this thesis.

First, the de�nition of structurally stable nonau-
tonomous vector �elds given on a smooth closed man-
ifold was introduced using uniform homeomorphisms in
the extended phase space as an equivalency relation. On
this base a class of structurally stable vector �elds on a
closed 2-dimensional surface was constructed. Here the
notion of an exponential dichotomy for integral curves of
the nonautonomous vector �eld play an essential role. It
was published a paper [4], where, however, an approach to
the construction of the structurally stable nonautonomous
vector �elds was di�erent than in [3]. The point is that

working under the thesis I understood that the approach of [4] was not �exible and then I changed
it in the thesis. Also the inequalities of the Morse-Smale type were found in the thesis connecting
a topology of the ambient manifold and the possible collection of integral curves with various types
of exponential dichotomy. This was similar to the well known result by Smale [5]. These results
unfortunately were not published up to now by my own personal reasons. Only recently, a one-
dimensional version of this theorem was proved for a vector �eld on the circle [6]. This theorem was
also applied there to the case of almost periodic vector �eld on the circle.

The second cycle of problems in the thesis was the generalization onto the nonautonomous case
the theory of Poincar�e homoclinic orbits and the description of the structure of nearby integral
curves. These results were published in [7]. In particular, this situation arises when a one degree of
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freedom Hamiltonian system with a homoclinic orbit to a saddle is perturbed by an almost periodic
force. This case was considered later in [9] and [10]. This result is closely connected with the
Shilnikov work on homoclinic torus dynamics [11] and was initiated by him for my thesis.

The third topic of the thesis was a theorem connecting a structurally stable nonautonomous
vector �eld on a closed surface M with some autonomous Morse-Smale vector �eld on the cylinder
M × I. This result was also not published, its 1-dimensional variant is in [6].

After defending PhD thesis in 1975 I proceeded some time working in nonautonomous dynamics.
I became interested with �real life� applications and problems related with genuine nonautonomous
dynamics and addressed to several physicists trying to �nd such problems in a hope to apply results
and tools developed in the thesis. By �genuine� I mean nonautonomous vector �elds without almost
periodic dependence on time, when this vector �eld cannot be extended by means of the Bebutov-like
construction to the autonomous vector �eld on some smooth closed manifold. My attempts were
worthless and I got cold to this topic. Nevertheless, I introduced then the class of vertically hyper-
bolic skew products over the torus shifts and hypothesized they should be structurally stable under
vertical perturbations. This was the topic of my talk at the Conference on Di�erential Equations in
Kishinev in 1979. Similar results more deeply were elaborated by Bronshtein and his group [8].

In 1980 in Gorky the Conference �Stochasticity Seminar� was organized by the Institute of
Applied Physics of USSR Academy of Sciences. At this conference our close friend Valya Afraimovich
introduced us with Yan Umanskiy to the Moscow physicist V.M. Eleonsky who became later my
coauthor for many years and a friend. Also we made the acquaintance with his collaborator and
former PhD student N.E. Kulagin who also became my friend and co-author and we work together
till now. Eleonsky formulated a problem that was of great interest of him that time. He made
several papers on that topic with his co-authors from the F.V.Lukin Institute of Physical Problems
in Zelenograd [12, 13]. The problem was about �phase portraits� of integrable Hamiltonian systems.

It is now well known that two breakthroughs were made in mathematics that time. The �rst was
about systems with chaotic dynamics. This was started in 1961 with the famous talk by S.Smale at
the I International Conference on Nonlinear Oscillations in Kiev in 1961 on that was named later
as �Smale horseshoe�. In the USSR this topic soon afterwards became very popular and developed
deeply after brilliant works by D.V.Anosov, Ya.G. Sinai, L.P. Shilnikov, A.B. Katok, M.I. Brin,
Ya.B. Pesin, V.S. Afraimovich and many others. This �hyperbolic revolution� (the term introduced
by D.V. Anosov) was prepared by the previous great acievements in Dynamical Systems in Russia
and the USSR due to works by A.A. Lyapunov, A.A. Andronov, L.S. Pontryagin, N.M. Krylov, N.N.
Bogolyubov, E.A. Leontovich-Andronova, A.G. Maier, V.V. Nemytsky, and many others. This was
very vividly described by D.V. Anosov [14].

The second breakthrough occurred at approximately the same time in the �eld that later was
named as Integrable Hamiltonian PDEs. It was initiated by the famous work [15] where the inverse
scattering method was elaborated. Though PDEs to which this methods was applied (KdV, Nonlin-
ear Schr�odinger, sin-Gordon, Landau-Lifshits) were known much earlier (for instance, Boussinesq,
1877, Korteweg-de Vries, 1895), the method and its development using algebro-geometric approach
allowed to prove the integrability of these equations in one-dimensional spatial media. Studying
integrable PDEs revived the interest to �nite-dimensional Hamiltonian systems which appear nat-
urally at studying special solutions like traveling waves, stationary solutions, etc., as well as in
investigations of hierarchies of integrable equations, etc. In this way, many old integrable models
were rediscovered and revived, like integrable models in mechanics, hydrodynamics, etc.

The interest of V.M. Eleonsky was just related with the traveling wave equations generated by
the Landau-Lifshits equations. The problem concerns the following more general question: we know
that some Hamiltonian system is integrable, can we understand its orbit behavior? This question
was of interest for us with Yan Umanskiy, my old friend and fellow student, since problems of
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similar type were popular in our group in the Institute of Applied Mathematics and Cybernetics of
the Gorky State University were we worked that time (that is not surprising if one remembers the
history of our department headed by E.A. Leontovich-Andronova).

We became work with Umanskiy in this direction applying the method that seemed to us very
perspective. Namely, we studied the structure of a foliation given by orbits of the related Poisson
action. This action is generated by commuting integrals of the integrable Hamiltonian system. We
started with the local study in a neighborhood of a singular point but very soon we realized that it
is more correctly to study the extended neighborhood of the singular point. The point is that the
integrability forces action orbits leaving the neighborhood of the singular point to return there, if
the levels are compact. We made several papers in this topic [16, 17, 18].

Very soon the known Moscow mathematician A.T. Fomenko became interested with similar
problems [19]. Being a good geometer, he started from the observation that, for an integrable
Hamiltonian system in two degrees of freedom, any compact connected nondegenerate level of the
Hamiltonian carries the foliation de�ned by the second integral. Singularities of this foliation on the
level form smooth curves as a rule (sometimes they can be two-dimensional but this case is rare). He
assumed these curves to be nondegenerate in the transverse directions, what led him to the notion
of Bottian integral and he studied the foliation of the level on this base. The most spectacular
results in this direction were later obtained by Nguyen Tien Zung [22, 23]. In fact, what we did with
Umanskiy and the work by Fomenko and his school [20, 21] went in parallel, we always referred on
their papers though this was not reciprocal till some time, to our regret...

Finally, we were lucky to construct complete invariants of topological and iso-energetical equiva-
lence of integrable Hamiltonian systems with two degrees of freedom in their extended neighborhoods
of their singular point. These results were published in [24, 25, 26] and later were gathered in the
monograph [27] written by the proposition by V.I. Arnold.

My answer to the questions set up by Eleonsky was the paper [28] devoted to the description of the
phase portrait of the traveling wave solutions for the Landau-Lifshits equation. It was earlier proved
by Veselov [29] that this system is integrable in theta functions Prima. However, the complete orbit
behavior was hard to extract from this result. This system is equivalent to the mechanical system
describing the motion of a particle on the sphere in the linear potential. The related bifurcation
diagrams were constructed by Kharlamov [30]. A perturbation of this system when the Hamiltonian
of the Landau-Lifshits equation becomes a quartic polynomial instead of quadratic one was studied
in [31], this system turned out to be non-integrable at some region of parameters with the existence
of multi-hump solitons (multi-round homoclinic orbits). Here I applied a formula derived in our
paper [32] being an extension of the Melnikov formula onto the autonomous Hamiltonian case in
two degrees of freedom. Its multidimensional variant was given in [33].

In 1994 Ya.L. Umanskiy left for the USA. After his leaving I made only one paper dedicated to
integrable Hamiltonian systems with three degrees of freedom [34]. In that paper I studied extended
neighborhoods of singular points in such systems and bifurcations which arise unavoidably in these
systems. The topic of bifurcations in integrable systems turned out very interesting and today I
proceed studying bifurcations in integrable Hamiltonian systems.

During the work on integrable Hamiltonian systems I naturally became interested with the struc-
ture of nonintegrable Hamiltonian systems since the study of systems with complicated dynamics
was the main stream of the research in our Department. The �rst kick for me was the result by R.L.
Devaney [35] who carried over the result by Shilnikov [36] about a homoclinic loop of a saddle-focus
to the Hamiltonian case. The problem laid initially in the fact that formally Shilnikov's results
cannot formally be applied to a Hamiltonian 4-dimensional case, since Shilnikov required for the
saddle-focus some inequality to hold (nonzero saddle value) that is always not ful�lled for a Hamil-
tonian case. So, one needs to understand how Shilnikov's results can be modi�ed. Devaney used the
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local normal form of Moser valid for a saddle-focus (a quadruple of complex eigenvalues with nonzero
real parts) and was able to distinguish a hyperbolic subsystem in a neighborhood of a transverse
homoclinic orbit to a saddle-focus which is described by a suspension over Bernoulli scheme with
two symbols.

My contribution to this problem was twofold [37, 38]. It was described the whole invariant subset
in a neighborhood of a transverse homoclinic orbit on the singular level of the Hamiltonian H by
means of the symbolic system with countably many states (see also, [39]). Also I was able to prove
that if one varies the value of the Hamiltonian, when approaching zero, the system countably many
times passes through bifurcations of which the �rst is the appearance of a parabolic point for the
Poincar�e map on some strip in a neighborhood of a homoclinic point, creation of an elliptic point
and a saddle, doubling of the elliptic point, doubling cascade, etc. with the formation of new pair
of states in the related symbolic system.

After that I studied an orbit structure and bifurcations when varying values of H for a Hamilto-
nian system that has on some level of a Hamiltonain two saddle-foci with two transverse heteroclinic
orbits to them forming a heteroclinic connection [40]. This problem, besides its own interest, was
induced by my new interest to problems of PDEs. 1

One more problem, I solved that time, was the study of the orbit structure for a Hamiltonian
system with two degrees of freedom near a homoclinic orbit to a non-hyperbolic equilibrium of the
saddle-center type. Such an equilibrium is structurally stable under Hamiltonian perturbations but,
in contrast to the case of homoclinic orbits to saddle-focus or saddle, existence of a homoclinic orbit
to such equilibrium is a degeneration of codimension 2, though it can be of codimension 1 within the
class of reversible Hamiltonian systems that is frequent in applications. The main point of interest for
me was to �nd conditions when the existence of such a loop would lead to the complicated (chaotic)
behavior of orbits. By that time I knew one paper by Conley [43], who considered the structure near
a homoclinic orbit to a saddle-center in an analytic Hamiltonian system with 2 degrees of freedom,
but, in my opinion, no essential results were obtained in that paper.

In [44] I found a quite useful for applications su�cient condition in order all Lyapunov small
periodic orbits �lling the center manifold near a saddle-center have four transverse homoclinic orbits
on their corresponding levels of the Hamiltonian. This naturally implies the system be nonintegrable
and chaotic [44]. That paper received many references (96) and has many followers, among them are
A.Mielke, P.Holmes, C.Grotta Ragazzo, A.Celletti, K.Yagasaki, others. This result was extended in
papers with my PhD student O.Koltsova [45, 46]. There we reformulated the su�cient conditions
in the form of the scattering problem for a system linearized on the homoclinic orbit, studied
bifurcations, and extended this to the case of n degrees of freedom for a Hamiltonian system with
1-elliptic equilibrium (having one pair of simple pure imaginary eigenvalues and other with nonzero
real parts) and a homoclinic orbit to it. In the latter problem the Moser normal form near the
equilibrium was absent and we developed the method of the scattering problem for the linearized
system at the homoclinic orbit. The method allowed us to give the condition of the existence of four
transverse homoclinic orbits for all Lyapunov periodic orbits on the center manifold. This gave the
non-integrability criterion for the multi-dimensional case under consideration.

Results on nonintegrable Hamiltonian systems, a part of results on integrable dynamics, along
with the investigation of some applied problems (Landau-Lifshits equations, stationary Swift-
Hohenberg equation and nonlocal sin-Gordon equation) made up the content of my Habilitation
thesis (Doctor of Science) defended in 1999 in the Nizhny Novgorod University. Just after the de-
fence I left for Berlin to work in the group by B. Fiedler in the Free University of Berlin. I worked

1The orbit structure of a 2 DOF Hamiltonian system near a bunch of transverse homoclinic orbits to a saddle was
described by Turaev and Shilnikov [41, 42].

14



there 1 year, after that I returned to Nizhny Novgorod and realized that I should change the job,
since the salary in the Institute of Applied Mathematics, where I worked since 1968, was that time
so low that it was impossible to live. I became a Professor at the Nizhny Novgorod University, in
the Department of Di�erential Equations and Calculus. I work in the University till now. One of
my permanent lecture courses were ordinary di�erential equations for students of the second year.
The lecturing led me to the necessity to publish my lectures since I regarded that the stu� presented
was more agreed to my tastes. It was done in 2016 [48].

Another application of these ideas was a joint paper [49] on the existence of homoclinic orbits
to invariant low dimensional KAM tori on the center manifold for a Hamiltonian system being
a perturbation of an integrable 3 DOF system with a homoclinic orbit to a center-center-saddle
equilibrium.

Later the methods and results on homoclinic orbits to nonhyperbolic equilibria were also extended
for 3 degrees of freedom Hamiltonian systems with homoclinic orbits to a 1-elliptic periodic orbit.
It was the paper with my other PhD student A. Markova [50]. This is equivalent to the study of
a symplectic di�eomorphism on a 4-dimensional symplectic manifold such that the di�eomorphism
has a 1-elliptic �xed point (two eigenvalues on the unit circle and reals out of it) and a homoclinic
orbit to the �xed point.

One more line of my research was the study of slow-fast Hamiltonian systems. This was also
inspired by my collaboration with Eleonsky and his group [51]. In a model, being a nonlocal
generalization of the sin-Gordon equation, they found a situation, when the system for traveling
waves being a Hamiltonian in 2 degrees of freedom with a saddle-center, has homoclinic orbits to it
(they correspond to soliton-like solutions of the model). At some limiting case this system becomes
singularly perturbed (slow-fast) such that its slow subsystem (being 1 DOF Hamiltonian) has a
saddle with a homoclinic orbit. A question then arose, whether the full system has homoclinic
orbits to the corresponding saddle-center. That time I worked at the Free University of Berlin in the
group by B. Fieldler where V. Gelfreich, former PhD student by Prof. V.F. Lazutkin, had a postdoc
position (today he is a Professor at the Warwick University, UK). I told him about this problem and
we discussed it a lot. The result of our discussions were several papers [52, 53, 54]. In these papers
we discovered that for an analytic slow-fast Hamiltonian system near its slow manifold, if the related
fast system is fast rotating, the system can be reduced up to exponentially small error to a more
simple system. The Hamiltonian of this simpli�ed system is split into fast rotation and the second
function to which the fast variables (x, y) enter only in the combination I = x2 + y2. Such form of
the Hamiltonian gives integrability up to exponentially small error, if the system has two degrees of
freedom (one slow and one fast). One more result was published in [55] where we found approximate
formula for splitting separatrices of the saddle-center in an analytic slow-fast Hamiltonian system.

In this way I got interested with a general geometric framework in which slow fast Hamiltonian
systems can be de�ned coordinate-freely. We were also lucky to demonstrate mathematically rigor-
ously the appearance of Painlev�e equations at the description of orbits of a slow fast system passing
near a disruption point on a slow manifold [56]. Though it was known by the date in concrete
systems, the invariant description seemed us be useful.

As I mentioned, the collaboration with the group of Eleonsky inspired my interest to the study of
solutions to PDEs. One direction of this research was to understand how rich can be a set of patterns
for nonlinear elliptic equations that were obtained either as stationary solutions of evolutionary PDEs
or some other ways. My role in these research was to �nd mathematical backgrounds to substantiate
the simulations made by the team. In this way, studying solutions to nonlinear elliptic equations of
the type of localized wall with a periodic modulation, I came to the method of a center manifold
for a formal evolution equation derived from the elliptic one. Such a setting usually leads to an
incorrect initial problem but it turned out that if this center submanifold is of a �nite dimension
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and some conditions for nonlinearities hold then the restriction of the equation to such class of
solutions give true solutions. Later, digging the literature I discovered that this idea came to brains
of K. Kirschg�assner earlier [57] and it was strictly realized by his pupil A.Mielke [58]. Nevertheless,
this gave me a direction of thinking. We made several papers in this direction, see, for instance,
[59, 60].

The main interest in our group around Shilnikov was understanding the orbit behavior in systems
with complicated dynamics. When I became interested with PDEs, Shilnikov started the discussion
on a possibility to extend his results on Poincar�e homoclinic orbits onto in�nite dimensional systems.
The paper [61] was an answer to these questions. In contrast to the case of a �nite dimensional
di�eomorphism we did not assume the existence of an inverse map, since for PDEs, in particular,
of the parabolic type, it is not naturally. Nevertheless, we obtained the description of the invariant
subset near a homoclinic orbit.

Another direction of research arose after my discussions with the well known physicist M. Ra-
binovich concerning a structure of the Swift-Hohenberg equation which he studied with his collab-
orators [62]. For me it was very exciting that the related equation for its stationary solutions in
one-dimensional geometry on R gave an ordinary di�erential equation which is reducible to a Hamil-
tonian system with 2 degrees of freedom. This was more funny since the evolutionary SH equation
itself is of parabolic type and his temporal solutions decay to stationary ones (for some boundary
conditions). Since I had rather big experience in the study of such systems, I tried to understand
some unclear physicist' reasons to substantiate bifurcation like appearance of localized solutions,
Eckhaus instability [63] of periodic patterns, etc. I drew to this problem my PhD student Lev Gleb-
sky (now a Professor at the University of San Luis Potoci, Mexico) and we realized that all these
features of the equation can be explained on the base of the Hamiltonian Hopf Bifurcation and its
generalization [64]. Exploiting the additional reversibility of the system [65], we were able to show
existence of localized solution, multi-round localized solutions, bifurcations of periodic patterns, the
threshold character of appearance of localized solutions, etc. Temporal stability of localized and
periodic solutions in the more general case of spatially reversible PDEs was studied in our paper
[66].

Since the Swift-Hohenberg equation describes the patterns not only in 1-dimensional setting but
in 2D, 3D geometry, it was very natural to try to �nd such patterns using mathematical tool. We
made several papers [67, 68, 69] in this direction starting since the search for radially symmetric
patterns where methods of �nite-dimensional systems can be else used. Combining methods of
nonautonomous dynamics, local description near equilibria at in�nity and numerical methods we
found several types of radial patterns in the Swift-Hohenberg equation on the plane. Later these
results were extended and stood on a rigorous mathematical foundation by Sandstede with coauthors
[70].

Several years ago being in Suzdal at the International Conference on Di�erential Equations and
Dynamical Systems I discussed these problems with A.I. Nazarov (Saint Petersburg University and
SP branch of the Steklov Mathematical Institute). He told me that they are able to prove existence
of majority of patterns known by the date using purely variational methods that are based on
concentration arguments and symmetry considerations, at least for some nonlinear elliptic equations
relevant for applications. We agreed to collaborate and try to make something in this direction. As a
result, the paper [71] has appeared. We hope proceeding this collaboration to catch other interesting
equations.

Recently we, disciples and colleagues of L.P. Shilnikov (1934-2011), gathered and commented
the main papers by L.P. Shilnikov which made his name famous worldwide. The created book is
our great respect and gratitude to our teacher and friend [72].

Many interesting problems stay unsolved and much work has to be done to understand some of
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them...

References

[1] L.M. Lerman, L.P. Shilnikov, On the existence and stability of almost periodic tubes, Proc. of
V Intern. Conf. on Nonlin. Oscillations, Kiev, August 25 - September 4, 1969, v.2, Qualitative
methods of nonlin. oscill., 292-297, Kiev: Naukova Dumka P.H., 1970.

[2] L.S. Pontryagin, Les fonctions presque periodiques et l'analysis situs, C.r. Acad. Sci.,196, 1933.

[3] L.M. Lerman. On nonautonomous dynamical systems of the Morse-Smale type, PhD thesis,
Gorky State Univ., Gorky, 1975, 150 pp. (in Russian).

[4] L.M. Lerman, L.P. Shilnikov. On the classi�cation of structurally stable nonautonomous systems
of the second order with a �nite number of cells, Soviet Math. Dokl., v.14 (1973), No.2, 444-448
(transl. from Russian: Dokl. Akad. Nauk SSSR, v.209 (1973), 544-547).

[5] S. Smale, Morse inequality for a dynamical systems, Bull. AMS, v.66 (1960), 43-49.

[6] L.M. Lerman, E.V. Gubina, Nonautonomous gradient-like vector �elds on the circle: classi�ca-
tion, structural stability and autonomization, Discr. Cont. Dynam. Syst., Ser. S, v.19 (2020),
doi:10.3934/dcdss.2020076.

[7] L.M. Lerman, L.P. Shilnikov. Homoclinic structures in nonautonomous systems: Nonau-
tonomous chaos, Chaos: Intern. J. Nonlin. Sci., v.2, No.3 (1992), 447-454.

[8] I.U. Bronshtein. Nonautonomous dynamical systems, Kishinev: Shtiintsa P.H., 1984.

[9] J. Scheurle, Chaotic solutions of systems with almost periodic forcing, J. Appl. Math. Phys.
(ZAMP), v.37 (1986), 12-26.

[10] D. Sto�er, Transversal homoclinic points and hyperbolic sets for non-autonomous maps I, J.
Appl. Math. Phys. (ZAMP) v.39, 518-549, II, ibid, v.39, 783-812.

[11] L.P. Shilnikov, Contribution to a problem on the structure of a neighborhood of a homoclinic
tube of an invariant torus, Doklady: Math., v.180 (1968), No.2, 286-289 (in Russian).

[12] V.M. Eleonsky, N.N. Kirova, V.M. Petrov, General type of solutions of the Landau-Lifshitz
equations, Journal of Experimental and Theoretical Physics, v.68 (1975), 1928-1936.

[13] V.M. Eleonsky, N.N. Kirova, N.E. Kulagin, New conservation law for the Landau-Lifshits equa-
tion, Sov. Phys. JETP, v.77 (1979), 409-419.

[14] D.V. Anosov, Dynamical Systems in the 1960s: The Hyperbolic Revolution. In: Bolibruch .A.A.
et al. (eds) Mathematical Events of the Twentieth Century. Springer, Berlin, Heidelberg (2006).

[15] C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for Solving the Korteweg-de
Vries Equation, Phys. Rev. Lett., v.19 (1967), 1095-1097.

[16] L.M. Lerman, Ya.L. Umanskii, The structure of a Poisson action of R2 on a four-dimensional
symplectic manifolds, I, Selecta Math. Sov. (transl. from Russian paper of 1982), 1987, vol.6,
No.4, 365-396.

[17] L.M. Lerman, Ya.L. Umanskii, The structure of a Poisson action of R2 on a four-dimensional
symplectic manifolds, II, Selecta Math. Sov. (transl. from Russian paper of 1982), 1988, vol. 7,
39-48.

[18] L.M. Lerman, Ya.L. Umanskii, Integrable Hamiltonian systems and Poisson actions, Selecta
Math. Sov. v.9 (1990), 59-67 (transl. of the paper in Russian of 1984).

[19] A.T. Fomenko, Russian Math.: Izvestia, 1986, v.50, No.6, 1276�1307.

[20] A.V. Bolsinov, Methods of calculation of the Fomenko�Zieschang invariant. Topological clas-
si�cation of integrable systems, in Advances in Soviet Mathematics, V. 6, AMS, Providence,
147�183, 1991.

17



[21] A.V. Bolsinov, S.V. Matveev, and A.T. Fomenko, Topological classi�cation of integrable Hamil-
tonian systems with two degrees of freedom. List of systems of small complexity. Uspekhi Mat.
Nauk, 45(2) : 49�77, 1990.

[22] Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. I: Arnold�Liouville
with singularities. Compositio Math., 101 : 179�215, 1996.

[23] Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II: Topological
classi�cation. Compositio Math., 138(2) : 125�156, 2003.

[24] L.M. Lerman, Ya.L. Umanskii, Classi�cation of four-dimensional Hamiltonian systems and
Poisson actions of R2 in extended neighborhood of simple singular points, I, Matem. Sbornik,
(in Russian), 1992, vol. 183, 141-176.

[25] L.M. Lerman, Ya.L. Umanskii, Classi�cation of four-dimensional Hamiltonian systems and
Poisson actions of R2 in extended neighborhood of simple singular points, II, Matem. Sbornik,
(in Russian), 1993, vol. 184, 105-138.

[26] L.M. Lerman, Ya.L. Umanskii, Classi�cation of four-dimensional Hamiltonian systems and
Poisson actions of R2 in extended neighborhood of simple singular points, III. Realization, (in
Russian), Matem. Sbornik, 1995, vol. 186, 89-102.

[27] L.M. Lerman, Ya.L. Umanskii. Four-Dimensional Integrable Hamiltonian Systems with Simple
Singular Points (Topological Aspects), Transl. Mathem. Monographs, AMS, v. 176, 1998.

[28] L.M. Lerman, More about the structure of integrable stationary waves for the Landau-Lifshits
equation, Selecta Math., formerely Sovietica, v.12 (1993), No.4, 333-351.

[29] A.P. Veselov, Landau-Lifshits equation and integrable systems of classical mechanics, Dokl.
USSR Acad. Sci., v.270 (1983), No.5, 1094-1097.

[30] M.P. Kharlamov, Topological Analysis of Integrable Problems in the Dynamics of Solid Bodies,
Leningrad: LGU P.H., 1988.

[31] L.M. Lerman, Nonintegrability and stationary solitons of complex pro�le for Landau-Lifshits
equation, JETF Lett., v.51, No.6, 383-386.

[32] L.M. Lerman, Ya.L. Umanskii, On the existence of separatrix loops in four-dimensional systems
close to integrable Hamiltonian, PMM U.S.S.R., Vo1.47, No.3 (1984), 335-340 (Transl. from the
Russian paper of 1983).

[33] L.M. Lerman, Ya.L. Umanskiy, Melnikov method for �nding chaos, Nonlinear World, Proc. IV
Int. Workshop on Nonlin. Turb. Proc. in Phys., Kiev, Naukova Dumka P. H., 1989, v.2, 387-381.

[34] L. Lerman, Isoenergetical Structure of Integrable Hamiltonian Systems in an Extended Neigh-
borhood of a Simple Singular Point: Three Degrees of Freedom, in �Methods of Qualitative The-
ory of Di�erential Equations and Related Topics� /Eds. L.Lerman, G.Polotovsky, L.Shilnikov,
Supplement, AMS Translations, Ser.2, V.200, "Adv. in Math. Sci.", AMS, Providence, R.I.,
2000, 219-242.

[35] R.L. Devaney, Homoclinic orbits in Hamiltonian systems, J. Di�. Equat., v.21 (1976), 431-438.

[36] L.P. Shilnikov, A Contribution to the Problem of the Structure of an Extended Neighbourhood
of a Rough Equilibrium State of Saddle-Focus Type, Math. USSR-Sb., 1970, vol.10, no.1,
91�102.

[37] L.M.Lerman. Complex dynamics and bifurcations in Hamiltonian systems having the transversal
homoclinic orbit to a saddle-focus, Chaos: Interdisc. J. Nonlin. Sci. 1991. V.1. No.2. P. 174�180.

[38] L.Lerman, L. Lerman. Dynamical phenomena near a saddle-focus homoclinic connection in a
Hamiltonian system, J. Stat. Physics, v. 101, No. 1-2 (2000), 357-372.

[39] L.A. Belyakov, L.P. Shilnikov, Homoclinic Curves and Complex Solitary Waves, Selecta Math.
Soviet., 1990, vol.9, no. 3, pp. 219�228.

18



[40] L.M. Lerman, Homo- and Heteroclinic Orbits, Hyperbolic Subsets in a One-Parameter Un-
folding of a Hamiltonian System with Two Saddle�Foci, Reg. Chaotic Dyn. v.2 (1997), No.3,
139�155.

[41] D.V. Turaev, L.P. Shil'nikov, Hamiltonian Systems with Homoclinic Saddle Curves, Soviet
Math. Dokl., 1989, vol.39, no.1, pp. 165�168; see also: Dokl. Akad. Nauk SSSR, 1989, vol.304,
no. 4, pp. 811�814.

[42] D. Turaev, Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral,
Reg. Chaot. Dyn., Vol.19 (2014), No.6, 681�693.

[43] J.C. Conley, On the ultimate behavior of orbits with respect to an unstable critical point, I.
Oscillating, asymptotic and capture orbits, J. Di�. Equat., v.5 (1969), 136-158.

[44] L.M. Lerman, Hamiltonian systems with loops of a separatrix to a saddle-center, Selecta Math.
Sov., v.10 (1991), No.3, 297-306 (Transl. of paper 1987 in Russian).

[45] O.Yu. Koltsova, L.M. Lerman, Periodic and homoclinic orbits in a two-parameter unfolding of
a Hamiltonian system with a homoclinic orbit to a saddle-center, Int. J. Bifurcation & Chaos.
1995. V.5. N 2. P. 397-408.

[46] O. Koltsova, L. Lerman, Families of transverse Poincar�e homoclinic orbits in 2N-dimensional
Hamiltonian systems close to the system with a loop to a saddle-center, Int. J. Bifurcation &
Chaos, Vol.6 (1996), No.6, 991�1006.

[47] L.M. Lerman. The behavior of muldi-dimensional Hamiltonian systems in neighborhoods of
homoclinic orbits to singular points, Dissertation, Doctor of Sci., Nizhny Novgorod, 1999,
301 pp. Ïîâåäåíèå ìíîãîìåðíûõ ãàìèëüòîíîâûõ ñèñòåì â îêðåñòíîñòÿõ ãîìîêëèíè÷åñêèõ
òðàåêòîðèé ê îñîáûì òî÷êàì

[48] L.M. Lerman. Lectures on ordinary di�erential equations, RSC �Regular and Chaotic Dynam-
ics�, Moscow-Izhevsk, 2016, 280 pp. (in Russian).

[49] Koltsova O., Lerman L., Delshams A., Guti errez P., Homoclinic orbits to invariant tori near a
homoclinic orbit to center-center-saddle equilibrium, Phys. D, Vol.201 (2005), No.3�4, 268�290.

[50] L. Lerman, A. Markova, On symplectic dynamics near a homoclinic orbit to 1-elliptic �xed
point, Trans. Moscow Math. Soc., v.76 (2015), No. 2, 271�299.

[51] G.L. Al�mov and V.M. Eleonsky, L. M. Lerman, Solitary wave solutions of nonlocal sine-Gordon
equations, Chaos, v.8, No.1, 257-271.

[52] V. Gelfreich, L. Lerman, Almost invariant elliptic manifold in a singularly perturbed Hamilto-
nian system, Nonlinearity, v.15 (2002), 447-457.

[53] V. Gelfreich, L. Lerman, Long periodic orbits and invariant tori in a singularly perturbed
Hamiltonian system, Physica D, 176 (2003), No. 3-4, 125-146.

[54] V. Gelfreich, L. Lerman, Slow-fast Hamiltonian dynamics near a ghost separatrix loop, J. of
Math. Sci., Vol. 126, No.5, 2005, 1445-1466.

[55] L.Lerman, V.Gelfreich, Splitting separatrices at the Hamiltonian 02iω bifurcation, Reg. Chaot.
Dynam., v.19 (2014), No.6, 635-655.

[56] L.M. Lerman, E.I. Yakovlev, Geometry of slow-fast Hamiltonian systems and Painlev�e equa-
tions, Indagationes Mathematicae, v.27 (2016), 1219-1244.

[57] K. Kirchg�assner, Wave-solutions of reversible systems and applications, J. Di�. Eqs., v.45
(1982), No.1, 113-127.

[58] A. Mielke, A reduction principle for nonautonomous systems in in�nitedimensional spaces, J.
Di�. Eqs., V.65 (1986), No.1, 68-88.

19



[59] G.L. Al�mov, V.M. Eleonsky, N.E. Kulagin, L.M. Lerman, V.P. Silin, On the existence of
nontrivial solutions for the equation ∆u − u + u3 = 0, Physica D, V.44 (1990), No.1-2, p.
168-177.

[60] G.L. Al�mov, V.M. Eleonsky, N.E. Kulagin, L.M. Lerman, V.P. Silin, On some types of non one-
dimensional self-localized solutions of the equation ∆u+ f(u) = 0, in �Methods of Qualitative
Theory and Bifurcation Theory�, L.P. Shilnikov (Ed.), Nizhny Novgorod State Univ., 1991, p.
154-169 (in Russian).

[61] L.M. Lerman, L.P. Shilnikov, Homoclinic structures in in�nite dimensional systems, Siber.
Math. J., v.29 (1988), No.3, 92-103.

[62] I.S. Aranson, K.A. Gorshkov, A.S. Lomov, and M.I. Rabinovich, Stable Particle-Like Solutions
of Multidimensional Nonlinear Fields, Phys. Rev. D 43 (1990), 435�453.

[63] W. Eckhaus, Studies in Nonlinear Stability Theory, Springer-Verlag, New York, 1965.

[64] L. Glebsky, L. Lerman, On small stationary localized solutions for the generalized 1-D Swift-
Hohenberg equation. Chaos: Intern. J. Nonlinear Sci., V.5 (1995), No.2, 424-431.

[65] G. Iooss, M.C. Peroueme, Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector
Fields, J. Di�. Equat., v.102 (1993), Iss.1, 62-88.

[66] L.Yu. Glebsky, L.M. Lerman, Instability of small stationary localized solutions to a class of
reversible 1 + 1 PDEs, Nonlinearity, V.10 (1997), No.2, 389-407.

[67] N.E. Kulagin, L.M. Lerman, T.G. Shmakova, Fronts, Traveling Fronts, and Their Stability in
the Generalized Swift-Hohenberg Equation, Comput. Math. and Math. Physics, Vol.48 (2008),
No.4, 659-676.

[68] N.E. Kulagin, L.M. Lerman, T.G. Shmakova, On radial solutions of the Generalized Swift-
Hohenberg Equation, Proc. Steklov Inst. of Math., July 2008, Volume 261, Issue 1, 183-203.

[69] N.E. Kulagin, L.M. Lerman, Localized solutions of a piecewise linear model of the Swift-
Hohenberg equation on the line and the plane, J. Math. Sci., Vol.202 (2014), No.5, 684-702.

[70] D.J.B. Lloyd, B. Sandstede, D. Avitabile, A.R. Champneys, Localized Hexagon Patterns of the
Planar Swift�Hohenberg Equation, SIAM J. Appl. Dyn. Syst., Vol.7, No.3, 1049�1100.

[71] L.M. Lerman, P.E. Naryshkin, A.I. Nazarov, Abundance of entire solutions to nonlinear elliptic
equations by the variational method, Nonlinear Analysis, v.190 (2020) 111590.

[72] L.P. Shilnikov. SELECTED WORKS. Editors and Compliers: V.S. Afraimovich, L.A.Belyakov,
S.V. Gonchenko, L.M. Lerman, A.D. Morozov, D.V. Turaev, A.L. Shilnikov, Nizhny Novgorod:
P.H. of NN University, 2017, 431 cc. (in Russian).

20



To the 75th anniversary of A.D. Morozov

In the theory of dynamical systems, there is a number of �ever green� topics which have been in
focus for centuries. These include, �rst of all, the theory of conservative (Hamiltonian) and close-to
Hamiltonian systems. Such systems emerged almost immediately after the di�erential equations and
Newton's mechanics came into existence (17th century). For a long period of time, such systems

were generated almost solely by celestial mechanics which
essentially was always a solid theoretical basis and a means
of �justi�cation� of the interest to conservative systems.
Presently, such systems are omnipresent in applications
and there is no need to list the problems, where these are
encountered. By now, the theory of conservative (more
precisely, Hamiltonian) systems evolved into a huge chap-
ter of the theory of dynamical systems including as its in-
tegral part the theory of systems close to integrable (KAM
theory) together with the theory of systems with complex
behavior.

However, by early 60s, the theory of quasi-conservative
systems, i.e., of systems close to Hamiltonian yet non-
Hamiltonian, was only emerging. Theory of averaging by
Krylov and Bofolyubov could give some results concern-
ing the existence of quasi-periodical solutions in perturbed
systems but it could not provide any kind of a picture
of global system behavior, even under the assumption of
smaller dimension or for restrictions on some areas of the
phase space. Generally, the question is formulated as fol-
lows: what is the dynamics of quasi-conservative systems?

By essence, almost everything is known on dynamics
of such systems only in case of systems with one degree of
freedom, i.e. systems of the form

ẍ = f(x), x ∈ R

As V.I. Arnold wrote [1]: �for a qualitative study of such an equation, one view at the graph of its
potential energy is quite enough.� However, in the case of the so-called systems with 1.5 degrees of
freedom, e.g. when the function f = f(x, t) is periodic in time, everything becomes immeasurably
more complicated. Here, instead of the di�erential equation, it needs already to consider the Poincar�e
map, i.e. a planar map that is constructed by orbits of the corresponding non-autonomous system
for the period. There are no universal methods for studying dynamics of such systems (except,
perhaps, certain numerical methods). Moreover, even to now, it is not absolutely clear how to study
this problem in the case of a complex (stochastic) dynamics observed at numerics. Nevertheless, for
periodically perturbed systems of form ẍ = f(x) + εg(x, t) or ẍ = f(x) + εg(x, ẋ, t) with small ε,
this problem becomes much more researchable.
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Simplifying both the factual side of the problem and its historical aspects, we can say that
attempts of solving equations of the form

ẍ = f(x) + εg(x, t)

have led to the creation of the theory of area-preserving maps, whose main elements are the famous
KAM-theory, the theory of exponentially small splittings, the theory of conservative chaos, etc.,
some of which are also extended to multidimensional systems.

In Fig.1 we show, for comparison, phase portraits for the autonomous system (when ε = 0) and
for its Poincar�e map (when ε is su�ciently small). The phase portrait in the left �gure is very simple:
there are 3 equilibria, two centers and a saddle; the saddle has two separatrix loops, and the centers
are surrounded by closed orbits. The picture for the Poincar�e map is much more complicated: there
are 3 �xed points (one saddle and two elliptic points), the invariant manifolds of the saddle no longer
coincide, but intersect (in general, the angles between the splitted manifolds will be of the order of
ε [2]), neighborhoods of the elliptic points have a �KAM structure�. The latter means that these
neighborhoods are �lled with a continuum of closed invariant curves whose relative measure tends to
1 as ε→ 0. Besides, inside neighborhoods of the elliptic points, there is a countable set of resonant
zones with garlands of alternating elliptic and saddle periodic points, and separatrices of the latter
have exponentially small (in ε) splitting in the case of analytic systems.

Figure 1:

In general details, this picture (right �gure) became known only in the early 1960s, thanks to
the famous KAM theory created by that time [3, 4, 5]. This theory generated great interest among
specialists all over the world. At the same time, it brought many new questions and problems to
light. Simplifying the details, one of these problems can be formulated as follows: what will happen
to the dynamics of the Poincar�e map when considering perturbations of more general types, e.g.
such as

ẍ = f(x) + εg(x, ẋ, t).

In other words, what is the dynamics of quasi-conservative systems?
This problem, for a system with 1.5 degrees of freedom (i.e., periodic perturbations of a Hamil-

tonian system with one degree of freedom) was formulated by L.P. Shilnikov, and was essentially
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solved by A.D. Morozov. This solution constitutes the dominant portion of the subject matter of his
PhD thesis �On the theory of equations of Du�ng type close to nonlinear conservative ones� (1975)
[6]. The main results were published in a series of papers [7, 8, 9, 13]. Besides, these results and
their development can be found in Morozov's monographs [10, 11].

Figure 2: Examples of resonances of various types: (a) a passable resonance; (b)�(c) two types of half-passable

resonances; (d)�(g) four types of impassable resonances.

In short, it can be noted that in Morozov's papers, the following important questions on quasi-
conservative system dynamics were answered:

• What happens to conservative resonances in case of non-conservative perturbations?

• What can be said about the number of periodical trajectories at autonomous non-conservative
perturbations?

• What happens to close invariant curves (tori)?
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• What is the �dissipation� in�uence to the trajectories behavior in the vicinity of the unper-
turbed separatrix?

This short essay does not allow even for a brief overview of all of A.D. Morozov's results in
this area, but one of those should be mentioned. It concerns the classi�cation of resonances, which
can be classi�ed as degenerate and non-degenerate. In their turn, non-degenerate resonances are
subdivided into three types, namely, �passable�, �semi-passable� and �non-passable�. Further, these
results were substantially complemented and generalized on the case of the systems with two degrees
of freedom.

Some idea of such resonances can be obtained by looking at Fig. 2, in which the behaviour of
phase curves of an averaged system is shown. Here one can also understand which bifurcations lead
to a change in type of resonance.

Further, these results were substantially supplemented and generalized to the case of systems with
more number of degrees of freedom, degenerate resonances were examined in detail, the in�uence of
quasiperiodic perturbations on Hamiltonian systems was studied, and much more.

A.D. Morozov started his scienti�c work during his undergraduate years in Gorky (nowadays,
Nizhny Novgorod) State University under the supervision of L.P. Shilnikov. After graduation in
1967, he joined the famous department at the Institute of Applied Mathematics and Cybernetics
organized by A.A. Andronov, who was the �rst head of the department; in 1967, the department was
led by E.A. Leotovich-Andronova. It was in 1967 that L.P. Shilnikov published his well-known paper
[12] containing the full solution of the Poincar�e-Birkho� problem on the structure of a neighborhood
of homoclinic Poincar�e curve (i.e., of the trajectory which is twice asymptotic to a saddle periodic
orbit). Thus no wonder that the �rst Morozov's scienti�c results concerned these topics, namely, they
contained the study of singularities of homoclinic structures in piecewise smooth and relay systems.
These results were presented at two conferences [14, 15], at the Congress on Theoretical and Applied
Mechanics, Moscow (1968), and on the V International Conference on Nonlinear Oscillations, Kiev
(1969).

Soon, however, Morozov (as agreed upon with Shilnikov, his supervisor) has shifted the focus of
his studies. This was caused by the emergence of new relevant problems following the success of KAM
theory. Since that time on, his main interest area has been the multi-dimensional quasi-conservative
systems. Here, as noted above, Morozov was very successful and obtained a large number of world-
class results. In 1975, under supervision of L.P. Shilnikov, he defended his PhD thesis at GSU [6],
and in 1990 his DSc thesis [16] (the defense was held at MSU at mechanics and mathematics faculty,
which is informally considered to be the leading school for di�erential equations in Russia).

For more than 40 years, A.D. has been engaged in university teaching along with active and
fruitful studies. In 1976, Morozov (by Shilnikov' recommendation) joined the mechanics and math-
ematics faculty of the Gorky State University, where he worked, at �rst, as an assistant professor,
and, since 1992, as a professor. From 2000 to 2015 he also held the chair of di�erential equations
and mathematical analysis.

During this time, he delivered numerous lecture courses, both general and specialized. Among
the latter, the following original courses can be distinguished: "Mathematical Methods in Nonlinear
dynamics�, �Fractals and chaos in dynamical systems�, �Theory of nonlinear resonance�, etc. Based
on the materials of these courses, manuals, textbooks and monographs were published, in particular,
[21], [20],[11]. In total, the list of Morozov's publications contains more than 150 titles, he published
10 books, two of them in the USA. Under his supervision, �ve PhD theses were defended.

As noted above, Morozov's studies concern, primarily, the investigation of close-to-Hamiltonian
dynamical systems. References to the main publications in this area can be found, for example, in
his books [10, 11]. Besides his fundamental results on the resonance structure in quasi-Hamiltonian
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systems, the following results should be mentioned. A version of Gilbert's problem for pendulum-
type equations was solved by him while studying the structure of resonant zones [17, 18, 19]. In
collaboration with his students ( A. Karabanov,[22], R. Kondrashev, [23], S. Korolev [24]), some
classes of systems with two degrees of freedom close to nonlinear integrable ones were investigated.
In collaboration with O. Kostromina, the equations of Du�ng type having homoclinic ��gure-8�
loop under asymmetric perturbations were studied. In particular, the principal types of homoclinic
structures for quadratic and cubic tangencies of separatrices of the �xed saddle point of the Poncar�e
map were established [25]. In collaboration with K.E. Morozov, non-autonomous (transitory and
quasi-periodic) systems were examined [26]-[29].

In his scienti�c works, Morozov paid considerable attention to development of computer-based
methods of studying the dynamic systems of various nature. For this purpose, in collaboration
with T. Dragunov, he has implemented WinSet multi-purpose computer program for visualization
of invariant sets of dynamical systems [30]-[31].
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ABSTRACTS

The �ux of magnetic helicity for the mean magnetic �eld equation

Akhmet'ev P.M.

Theoretical Dept.
Russian Federation, 108840, Moscow, Troitsk, Kaluzhskoe Hwy 4, IZMIRAN

The mean magnetic �eld equation describes the process of generating a magnetic �eld on a larger
scale due to turbulent pulsations on a smaller scale, see [1] for the basic de�nitions. As a rule, the
equation of the magnetic helicity �ux is studied on a larger scale, since the helicity for the mean
�eld is well de�ned. One may assume that the large scale velocity �eld admits a fast transport of
the helicity density.

In [2] the basic equation, described the �ux of the magnetic helisity, is applied for cosmological
magnetic �elds. In this framework a �rst-order approximation of the total �ux equation, the approx-
imative equation for a �ux of magnetic helicity, is introduced in [3]. This equation is not complete,
an extra term in this equation, using local formula for quadratic helisity [5], is proposed in [4].
Our goal is to construct a hierarchical (in�nite-dimensional) equation for the total �ux of magnetic
helicity, which contains �uxes of momenta. To solve this problem I will present calculations based
on the preprint [6].
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On the Critical Cases of Stability in Impulsive Systems

Anashkin O.V., Yusupova O.V.

Department of di�erential equations and geometry
Crimean Federal University

Impulsive di�erential equations (impulsive systems for short) correspond to a smooth evolution
that at certain times changes instantaneously, or one could also say abruptly. There are many
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applications of these equations to mechanical and natural phenomena. We refer to [1] for an extensive
list of references. In the report, an algorithm for computing the �rst Lyapunov value in a critical
case is proposed for a second-order periodic impulsive system

ẋ = Ax+
∑
|m|≥2

fmx
m, t ̸= τk, x(t+) = Bx(t) +

∑
|m|≥2

gmx
m, t = τk, (1)

where x(t+) = lims→t+0 x(s), m = (m1,m2) ≥ 0, |m| = m1 +m2, x = (x1, x2)
T , xm = xm1

1 xm2
2 , A,

B ∈ R2×2, detB ̸= 0, fm, gm ∈ R2, τk = kθ, k = 0, 1, 2, . . . , 0 < θ. The series on the right-hand side
of the system are assumed to be absolutely convergent in some neighborhood of zero. The system
is a periodic one of period θ.

We suppose that the linearization of the system (1)

ẋ = Ax, t ̸= τk, x(t+) = Bx(t), t = τk.

Without loss of generality, we will assume that the linearization monodromy matrix has the canonical

form M = eθAB =

(
α −β
β α

)
, α, β ∈ R, α2 + β2 = 1. Following an approach suggested in [2], we

will perform a linear change of variables y = Ψ(t)x in the system (1), where

Ψ(t) = Ψ(τ+k )e−tA, Ψ(τ+k ) = eθAΨ(τk), τk < t ≤ τk+1, k = 0, 1, . . . , Ψ(0) = I.

The θ-periodic nonsingular matrix Ψ(t) is a piecewise smooth on R. Thus the transformation
y = Ψ(t)x is a Lyapunov transformation.

In new variables, the system (1) takes the form

ẏ =
∑
|m|≥2

f̃m(t)y
m, t ̸= τk, y(t+) =My(t) +

∑
|m|≥2

eθAgmy(t)
m, t = τk, (2)

where f̃m(t)y
m = Ψ(t)fm(Ψ

−1(t)y)m are θ-periodic functions with respect to t.
Denote by y(t, y0) the solution of the di�erential equation of the impulsive system (2), which

satis�es the initial condition y(0) = y0. Calculating the coe�cients of the expansion of the solution
in a series from the initial data in a neighborhood of the origin y(t, y0) = y0 +

∑
m≥2 sm(t)y

m
0 ,

sm(0) = 0, to the third degree inclusive, we �nd an estimate of the value y(θ, y0). Substituting this
result into the formula of the impulse operator of the system (2), we obtain an approximation of the
Poincare map

y(θ+, y0) =My0 +
3∑

|m|=2

pmy
m
0 + . . . ,

where pm = g̃m(θ) +Msm(θ), if |m|=2, and p30 = g̃30(θ) + 2s
(1)
20 g̃20(θ) + s

(2)
20 g̃11(θ), p21 = g̃21(θ) +

2s
(1)
11 (θ)g̃20(θ) + (s

(1)
20 (θ) + s

(2)
11 (θ))g̃11(θ) + 2s

(2)
20 (θ)g̃02(θ), p12 = g̃12(θ) + 2s

(1)
22 (θ)g̃20(θ) + (s

(2)
02 (θ) +

s
(1)
11 (θ))g̃11(θ) + 2s

(2)
11 (θ)g̃02(θ), p03 = g̃03(θ) + 2s

(2)
02 (θ)g̃02(θ) + s

(1)
02 (θ)g̃11(θ). Due to the nonlinearity

of the di�erential equation in (2), for the values of sm(θ) we obtain very simple recurrence relations:

sm(θ) =
∫ θ
0 f̃m(t) dt for |m| = 2; sm(θ) =

∫ θ
0

(
f̃m(t) + rm(t)

)
dt for |m| = 3, where the functions

rm(t) depend only on sn(t) with |n| < |m|, more precisely, r30 = 2s
(1)
20 f̃20 + s

(2)
20 f̃11, r21 = 2s

(1)
11 f̃20 +

(s
(1)
20 + s

(2)
11 )f̃11 + 2s

(2)
20 f̃02, r12 = 2s

(1)
22 f̃20 + (s

(2)
02 + s

(1)
11 )f̃11 + 2s

(2)
11 f̃02, r03 = 2s

(2)
02 f̃02 + s

(1)
02 f̃11.

Thus the problem of stability of the trivial solution of the initial impulsive system is reduced to
the problem of stability of the zero �xed point of the smooth mapping P̃ (u) =Mu+

∑3
|m|=2 pmu

m,
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pm = (p
(1)
m , p

(2)
m )T ∈ R2. To study this problem, we bring it to the normal form until terms of the

third degree. It is convenient to pass to the complex conjugate variables z = u1 + iu2, z = u1 − iu2.
In the new variables we obtain the scalar equation

z̃ = F (z) = eiγz +

3∑
|m|=2

Gmz
m1zm2 = eiγz + G2(z, z) + G3(z, z), eiγ = α+ iβ. (3)

We eliminate the quadratic terms in (3) using an almost identical change of variables z = H(w) =
w +H2(w,w), H2 =

∑
|m|=2 hmw

m1wm2 , hm ∈ C.
We compute the inverse mapping up to cubic terms w = H−1(z) = z−H2(z, z)+Q3(z, z)+ . . . .

Complex coe�cients of a homogeneous polynomial are determined by the formulas q30 = 2h220 +
h11h02, q21 = 3h20h11+|h11|2+2|h02|2, q12 = 2h20(h11+h02)+h11(h20+h11), q03 = 2h02h20+h11h02.

In the new variables, the mapping takes the form w̃ = H−1 ◦ F ◦ H(w) = eiγw +∑
|m|≥3Wmw

m1wm2 . Given the presence of third-order resonances i(m1−m2)γ = ±iγ, |m| = 3, and
discarding, on the basis of the Poincare-Dulac theorem, nonresonant monomials of the third degree
and all monomials of higher degrees, we obtain the so-called model map

ŵ = eiγw(1 +A|w|2),

where A = G21e
−iγ +

e−iγ − 2

e2iγ − eiγ
G20G11 +

2|G02|2

e3iγ − 1
+

|G11|2

eiγ − 1
.

The sign of the �rst Lyapunov quantity L = ReA determines the stability character of the zero
solution of the initial impulse system (1) according to Lyapunov, namely, the solution is stable
asymptotically if L < 0 and unstable if L > 0.
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The Heisenberg calculus of a singular foliation

Androulidakis I.

National and Kapodistrian University of Athens
Department of mathematics

(Work in progress with Eric van Erp, Omar Mohsen and Robert Yuncken)
The hypoellipticity question extends to quite singular "sum of squares" operators. Examples

can be found in the work of Kolmogorov (e.g. the operator ∂2x + x∂y), also in Bismut's hypoelliptic
Laplacians. The answer is given by the celebrated theorem of Hoermander, which states that the
bracket generating condition induces hypoellipticity.

In order to understand better this result, we are looking for the Geometry behind it. The
�rst ingredient is a �ltration of the module of vector �elds on a manifold M , naturally induced by
the order of the terms of the given operator. The associated grading gives a (singular) bundle of
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nilpotent "osculating" groups, which accommodate the principal symbol (either as a distribution
or as a C*-algebra multiplier). Due to the bracket generating condition, the Schwarz kernel of the
operator is a distribution on the pair groupoid. We observe that all this is very nicely put together
using singular foliations. The �ltration gives rise to a very singular foliation parametrized by t. Its
associated holonomy groupoid is a kind of deformation to normal cone, which recovers the osculating
group(s) at t = 0. So the given operator admits a "longitudinal" description.

Frequency-domain methods for reduction of cocycles in Hilbert spaces

Anikushin M.M., Ryabova A.O.

Department of Applied Cybernetics of the Faculty of Mathematics and Mechanics
Saint Petersburg State University

Let Q be a metric space with a dynamical system ϑt : Q → Q, t ∈ R. A cocycle in a Hilbert space
H is a family of maps ψt(q, ·) : H → H, where t ≥ 0 and q ∈ Q, satisfying the following conditions:

1. ψ0(q, u) = u for every u ∈ H, q ∈ Q.

2. ψt+s(q, u) = ψt(ϑs(q), ψs(q, u)) for all u ∈ H, q ∈ Q and t, s ≥ 0.

3. The map R+ ×Q×H → H de�ned as (t, q, u) 7→ ψt(q, u) is continuous.

With each cocycle there is the corresponding skew-product dynamical system πt : Q×H → Q×H
de�ned as πt(q, u) := (ϑt(q), ψt(q, u)). We study the cocycle under the following conditions:

(H1) There is a continuous linear operator P : H → H, self-adjoint (P = P ∗) such that H splits into
the direct sum of orthogonal P -invariant subspaces H+ and H−, i. e. H = H+⊕H−, such that
P
∣∣
H− < 0 and P

∣∣
H+ > 0.

(H2) We have dimH− = j <∞.

(H3) For V (u) := (Pu, u) and some numbers δ > 0, ν > 0 we have

e2νrV (ψr(q, u)− ψr(q, v))− e2νlV (ψl(q, u)− ψl(q, v)) ≤

≤ −δ
∫ r

l
e2νs|ψs(q, u)− ψs(q, v)|2ds, (1)

for every u, v ∈ H, q ∈ Q and 0 ≤ l ≤ r.

We show that these conditions imply there is a subset A =
∪
q∈QAq of Q × H containing

bounded trajectories, invariant w. r. t. π and having �bers Aq homeomorphic to some subsets of the
j-dimensional space H−. Under certain compactness assumptions imposed on P or on the cocycle
these �bers become homeomorphic to entire H−. In other words, interesting dynamics under these
conditions is only j-dimensional. This can be used to derive various extensions of some well-known
low-dimensional results (such as the Poincar�e-Bendixson principle for autonomous ODEs; Massera's
convergence theorems for periodic ODEs [5]; Zhikov's principle of stationary point for almost periodic
ODEs [3]) to high- and in�nite-dimensional cases.

Similar assumptions were widely used [1, 2, 5] to study various autonomous and nonautonomous
ODEs, where (H3) can be veri�ed via the frequency theorem of Yakubovich-Kalman. We will show
how to apply in�nite-dimensional versions of the frequency theorem [4] to study periodic or almost
periodic nonlinear evolutionary problems, especially parabolic and functional-di�erential equations
[6].
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The Baum-Connes conjecture localised at the unit element of a discrete group

Antonini P.

Mathematics area SISSA
International School for Advanced Studies, SISSA

The Baum-Connes conjecture, a central topic in noncommutative topology, relates two natural
objects associated with a discrete group. The �rst one is topological in nature and involves a
classifying space for proper actions, the second one is analytical and involves the K-theory of the
reduced group C∗-algebra. One of the main features of the Baum-Connes conjecture is that it implies
the Novikov conjecture about the homotopy invariance of higher signatures of oriented manifolds.

In this talk we �rst give an introduction to the topic, then we present a version of the conjecture
that we constructed in collaboration with S. Azzali and G. Skandalis. It is called localised at the
unit element of a discrete group. This localised conjecture is de�ned using von Neumann algebras
and has some interesting properties especially in the relation with the Novikov conjecture.

Spiral chaos in three-dimensional �ows

Bakhanova Yu.V.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

This work is devoted to topical issues in the theory of spiral chaos of three-dimensional �ows, i.e.
the theory of strange attractors associated with the existence of homoclinic loops to the equilibrium
of saddle-focus type. The mathematical foundations of this theory were laid in the 60th in the famous
works of L.P. Shilnikov, and a lot of important and interesting results have been accumulated on
this subject to date. However, for the most part, these results were related to applications. Perhaps
for this reason the theory of spiral chaos lacked internal unity � until recently it seemed to consist of
separate parts. We make some attempt in this work to unify this theory based on the combination of
its two fundamental principles � Shilnikov`s theory and universal scenarios of spiral chaos, i.e. those
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elements of the theory that remain valid for any models, regardless of their origin. In this work we
discuss spiral chaos phenomena in both classical systems (Rossler and Arneodo-CoulletTresser) and
several models from applications.

First, we consider Rossler system [1] which possibly is the most known model that shows spiral
chaos:

ẋ = −y − z, ẏ = x+ ay, ż = bx− cz + xz. (1)

Spiral chaos in this system appears due to the Shilniklov's scenario. This scenario can be observed
in one parameter families with control parameter a. For a < a1 an asymptotically stable equilibrium
exists. At a = a1 this equilibrium undergoes a supercritical Andronov-Hopf bifurcation: it becomes
a saddlefocus a1,2), and a stable limit cycle l is born. Then, at a > a2, the limit cycle becomes of a
focal type and a two-dimensional unstable manifold begins to wind up on it, forming a con�guration
resemble a whirlpool. This whirlpool tightens all trajectories from an absorbing domain except for
one stable separatrix. With further increasing a the cycle l loses its stability, e.g. under a cascade of
period doubling bifurcations, while the size of the whirlpool grows. Finally, at a = a3, a homoclinic
loop appears and a strange attractor, containing this loop occurs. We will call such attractors
homoclinic attractors.

The second model is Arneodo-Coullet-Tresser system [2, 3].

ẋ = y, ẏ = z, ż = −y − βz + µx(1− x). (2)

that demonstrate spiral chaos with certain values of parameters β and µ. The system has constant
divergence −β, and thus attractor can exist only with β > 0. Scenario of spiral chaos appearance
here is the same as in the Rossler system.

The last model is the system that describes �uctuations of the concentrations of chemical elements
[4].

ẋ = x(βx− fy − z + g), ẏ = y(x+ sz − α), ż = (x− αz3 + bz2 − cz)/ε, (3)

The transition from a stable limit cycle to chaotic dynamics occurs not due to supercritical bifur-
cation of period doubling, as in the previous two models, but as a result of a subcritical period
doubling bifurcation, when a saddle cycle of a double period merges into a stable limit cycle.

This work is supported by the RSF grant 19-71-10048
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Non-stationary hyperbolic attractors in chaotic driven maps

Barabash N.V.1,2, Belykh V.N.1,2

1Department of Mathematics, 2Department of Control Theory and Dynamics of Systems
1Volga State University of Water Transport, 2Lobachevsky State University, Nizhny Novgorod

In this talk we consider driven maps having the form

x(i+ 1) = F (x(i), u(i)), (1)

where x ∈ Rn, F is a n-dimensional vector, i ∈ Z is a discrete time and the function u : Z → Rm is
a set of driving parameters changing the structure of the map at each time iteration.

Four cases are possible.
The case 1. In the trivial case u =const the map (1) becomes an ordinary autonomous map

for which all standard notations of attractors and bifurcations are applicable.
The case 2. In the case when a driving parameter u(i) is a periodic function of discrete time

u(i) = u(i + p) with a period p ∈ Z+ the dynamics of the map (1) is de�ned by the autonomous
map x(j + 1) = �F (x(j), i0), where i0 = 1, 2, . . . , p, j = pi is a new discrete time and �F is the
composition of the sequential maps.

The case 3. A driving parameter u(i) is an arbitrary bounded function of discrete time. To
study a particular case of an attracting set with hyperbolic properties we use the next de�nition of
non-stationary hyperbolic attractor [1].

De�nition 1. Let G : (∥x∥ ≤ x∗, x∗ = const) be an absorbing domain of the map F (x(i), u(i)),
FG ⊂ G, ∀i ∈ Z+. Let at each point x0 ∈ G the similar pairs of stable and unstable invariant
cones Ks and Ku be de�ned. Denote the linearization of the map F in the point x0: L(x0, i) =
DxF (x0, u(i)), where Dx is a di�erential with respect to x. Let the next conditions be ful�lled. The
operator L (the operator L−1) expands any vector V u

0 (V s
0 , respectively) released from x0 and lying

in the unstable cone Ku (the stable cone Ks, resp.) for any x0 ∈ G and i ∈ Z+. Then the set of
points in G on which the map F (x(i), u(i)) eventually acts for unboundly increasing i is called a
non-stationary hyperbolic attractor.

In this talk we study the problem of the existence of a non-stationary hyperbolic attractor for
the following two-dimensional Lurie-type map [2]

F :
x(i+ 1) = x(i) + y(i) + ag(x(i)) ≡ X(x, y),
y(i+ 1) = λu(i)(y(i) + bg(x(i))) ≡ Y (u, x, y).

where a, b, λ are positive parameters and g(x) is a piecewise-linear function of cubic type

g(x) =

{ 2 + 2x, x < −1
2 ,

−2x, |x| ≤ 1
2 ,

−2 + 2x, x > 1
2 .

For this map according to Def. 1 we rigorously prove the existence of the non-stationary hyper-
bolic attractor.

The case 4. The driving parameter u(i) is dynamically de�ned by the map

u(i+ 1) = f(u(i)). (2)

In this case one can join the maps (1) and (2) in one autonomous map de�ned in the extended
phase space and having a master-slave structure where the map (2) serves the master equation.
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Any attractor of the obtained autonomous map becomes stationary, and the master-slave structure
simpli�es the study of the joint map hyperbolic properties.

In our talk we give en example of such map and prove hyperchaotic properties of its attractor.
This work was supported by the Russian Foundation for Basic Research under Grant Nos. 18-01-

00556 (to V.N.B. and N.V.B.) and 18-31-20052 (to N.V.B.) and the Russian Scienti�c Foundation
(numerics) under Grant No. 19-12-00367 (to V.N.B. and N.V.B.).
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Riemannian manifolds and laminations

Barral Lij�o, R.

Research organization of science and technology
Ritsumeikan University

A foliated space is a topological space endowed with a partition into connected manifolds, called
the leaves of the foliated space, that locally looks like a product space in a coherent way. To each
such space, we can associate a dynamical system, which can be realized in di�erent ways.

In [3], the author together with �Alvarez L�opez and Candel studied the foliated properties of the
smooth Gromov space, which is the subspace of the Gromov space of pointed proper metric spaces
that only consists of pointed, complete and connected Riemannian n-manifolds. Subsequently, this
was used to give an answer to a modi�ed version of the realization problem in foliation theory[1, 2].
The precise statement of the main results are the following.

Theorem 1. The smooth Gromov space is a Polish space, and the subspace consisting of locally
non-periodic manifolds is a foliated space.

Theorem 2. Every connected, complete Riemannian manifold of bounded geometry can be realized in
a compact foliated space without holonomy. The foliated space can be chosen so that it is a matchbox
manifold.

An interesting characteristic of the methods used to prove this results is that one could try
to modify them in order to study the realization of manifolds in foliated spaces satisfying further
dynamical properties. In this talk we will present our previous research as well as the current research
regarding the realization of manifolds in foliated spaces with a dense set of compact leaves.

The talk is based on ongoing research with Prof. �Alvarez L�opez and Nozawa.
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Dynamics of Kuramoto oscillator networks

Belykh V.N.

Department of Mathematics, Department of Control Theory and Dynamics of Systems
Volga State University of Water Transport, Lobachevsky State University, Nizhny Novgorod

Patterns of phase locked oscillators are observed in many networks, ranging from neuronal pop-
ulations to power grids. Despite signi�cant interest among physicists and applied mathematicians,
the emergence and hysteretic transitions between phase-locked patterns in oscillatory networks, in-
cluding the celebrated Kuramoto network, have still not been fully understood. In this talk, I will
review the state of the art in research on phase-locking in networks of Kuramoto oscillators and
discuss new results and research trends.

Emergence of wandering stable components

Berger P.

IMJ-PRG
CNRS-Sorbonne University

In a joint work with Sebastien Biebler, we show the existence of a locally dense set of real poly-
nomial automorphisms of C2 displaying a wandering Fatou component; in particular this solves the
problem of their existence, reported by Bedford and Smillie in 1991. These wandering Fatou com-
ponents have non-empty real trace and their statistical behavior is historical with high emergence.
The proof follows from a real geometrical model which enables us to show the existence of an open
and dense set of Cr-families of surface di�eomorphisms in the Newhouse domain, each of which
displaying a historical, high emergent, wandering domain at a dense set of parameters, for every
2 ≤ r ≤ ∞ and r = ω. Hence, this also complements the recent work of Kiriki and Soma, by proving
the last Taken's problem in the C∞ and Cω-case.

Dynamics of a Beaver Ball: Topology and Chaos

Bizyaev I.A.1, Borisov A.V.1, Mamaev I.S.2

1Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
2Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia

This paper addresses the problem of the rolling of a spherical shell with a frame rotating inside,
on which rotors are fastened. It is assumed that the center of mass of the entire system is at the
geometric center of the shell.

For the rubber rolling model and the classical rolling model it is shown that, if the angular veloc-
ities of rotation of the frame and the rotors are constant, then there exists a noninertial coordinate
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system (attached to the frame) in which the equations of motion do not depend explicitly on time.
The resulting equations of motion preserve an analog of the angular momentum vector and are
similar in form to the equations for the Chaplygin ball. Thus, the problem reduces to investigating
a two-dimensional Poincar�e map.

The case of the rubber rolling model is analyzed in detail. Numerical investigation of its Poincar�e
map shows the existence of chaotic trajectories, including those associated with a strange attractor.
In addition, an analysis is made of the case of motion from rest, in which the problem reduces to
investigating the vector �eld on the sphere S2.

On the boundary between Lorenz attractor and quaisattractor
in Shimizu-Morioka system

Bobrovskiy A.A.1, Kazakov A.O.1, Korenkov I.M.1, Safonov K.A.2

1Laboratory of topological methods in dynamics
National Research University Higher School of Economics

2Institute of Information Technologies, Mathematics and Mechanics
Lobachevsky State University of Nizhny Novgorod

We study the boundary between Lorenz attractor and qusiattractors in the Shimizu-Morioka
system [1]: 

ẋ = y,

ẏ = x− ay − xz,

ż = −bx+ x2.

Here x, y, and z are phase variable, a and b are parameters of the system.
Under Lorenz attractor, we mean the stable closed invariant set which satis�es the condition of

the geometrical model of Afraimovich, Bykov, Shilnikov [2]. It means that it has a pseudohyperbolic
structure and, thus, it is robust with respect to small changing in parameters. The class of quasi-
attractors was introduced by Afraimovich and Shilnikov and contains non-robust strange attractors
which either possess stable periodic orbits with large periods and narrow absorbing domains or such
orbits appear with arbitrarily close perturbation [3, 4].

In the classical Lorenz system the boundary between Lorenz attractor and quasiattractors is
formed by the curve lA=0 where the separatrix value A of the corresponding Poincar�e maps vanishes
[5]. On the one side from the curve lA=0, when A > 0, the attractor is pseudohyperbolic, and
it becomes a quaisattractor on the other side, when A < 0. The violating of pseudohyperbolicity
on the curve lA=0 is associated with the destruction of the stable foliations in the corresponding
Poincare map [2]. It is important to note, that in the Lorenz system the saddle index ν of the saddle
equilibrium O(0, 0, 0) is less than 1/2 along the part of curve lA=0 bounded the region of existence
of the Lorenz attractor.

In the Shimizu-Morioka system, the saddle index ν along the curve lA=0 belongs to the interval
ν ∈ [ν1, ν2], where ν1 ≈ 0.31 and ν2 ≈ 0.82. Thus, the boundary between Lorenz attractor and
quasiattractor is much more complicated. For ν ≤ 1/2 it coincide with the curve lA=0 as in the
classical Lorenz model. However, in the case ν > 1/2, stable periodic orbits appear in the system
even for positive values of the separatrix value near the curve lA=0. Hence the region of existence
of the Lorenz attractors in this case is formed by the upper boundary of the corresponding stability
windows.
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For the detailed analysis of bifurcations in the neighborhood of the curve lA=0 we study a one-
dimensional factor-map of the corresponding Poincare map:

x̄ = (−1 +A|x|ν +B|x|2ν) · sign(x).

We establish that our theoretical investigations are in the full agreement with the numerical study
of the boundary of the existence of Lorenz attractor in the Shimizu-Morioka model.

This work was supported by the RSF grant No. 19-71-10048. The work of I.M. Korenkov was
also supported by the RBBR grant No. 18-31-00431.
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Twisted states in a system of nonlinearly coupled phase oscillators

Bolotov D.I.1, Bolotov M.I.1, Smirnov L.A.1,2, Osipov G.V.1 and Pikovsky A.3,1

1Department of Control Theory, Nizhny Novgorod State University, Russia
2Institute of Applied Physics Russian Academy of Sciences, Russia

3Institute of Physics and Astronomy University of Potsdam, Germany

The dynamics of the ring of nonlocally coupled identical phase oscillators is considered [1, 2, 3].
Using the Ott-Antonsen approach, the existence and stability of twisted states is studied [4]. Both
fully coherent and partially coherent stable twisted states were found. The existence of partially
coherent twisted states in a system of identical phase elements is described for the �rst time. This
regime appears due to the presence of a nonlinear phase shift in coupling term. The analytical
results are con�rmed in the framework of direct numerical simulation.

The work was supported by RSF grant â½� 19-12-00367 and RFBR grant â½� 19-52-12053.
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Dynamics of disordered heterogeneous chains of phase oscillators

Bolotov M., Levanova T., Smirnov L., Pikovsky A.

Lobachevsky State University of Nizhny Novgorod
University of Potsdam

Synchronization is a basic concept of rhythms adjustment of self-sustained periodic oscillators
due to their weak interaction. This adjustment can be described in terms of phase locking and
frequency entrainment. Synchronization phenomena in large ensembles of coupled systems often
manifest themselves as collective coherent regimes appearing via non-equilibrium phase transitions.
Despite the su�cient success in studies of this phenomenon in wide range of systems [1], there are still
several less elaborated problems, such as synchronization in disordered chains and lattices. Recent
studies [3, 5] have been restricted to the simplest case of pure sine-coupling of phase oscillators,
which is strongly dissipative. Another approach to disordered lattices has been developed in paper
[4], which is based on the reformulation of the problem in the basis of linear Anderson (localized)
modes with the main focus on weakly nonlinear regimes.

In this study we go beyond these investigations mainly by exploring disordered chains as the
simplest case of disordered lattices. Namely, we characterize synchronous states in disordered one
dimensional lattices of coupled phase oscillators. We considered disorder in natural frequencies of
oscillators, taking phase shift in the coupling, which determine whether interaction is attractive or
neutral, as the main parameter.

Previous studies, particularly fundamental paper by Ermentrout and Kopell [2], describe the
dynamics and bifurcations of the synchronous state in the case of zero phase shift in details. Our
main goal is to extend this study to the case of a non-zero phase shift. In the framework of this
study we numerically determined the existence and stability of synchronous states. The strategy
was to start with a vanishing disorder, where the synchronous states have just a smooth pro�le, and
to follow numerically these stationary solutions by increasing the disorder level, for di�erent sets of
the frequencies, checking for stability of the obtained solutions.

In order to do this we consider the lattice consisting of N phase oscillators with nearest-neighbor
coupling. In this case the evolution of the phase φn of each unit is given by the following equation

φ̇n=σωn+sin(φn+1−φn−α)+sin(φn−1− φn−α), (1)

where normalized natural frequencies ωn are taken from continuous uniform distribution over a line
segment [0, 1], the parameter σ de�nes the level of disorder in natural frequencies, and the phase shift
α determines whether the interaction between elements is attractive, repulsive or neutral. Below we
assume that the coupling is strongly attractive, i.e. α ≤ 0.3. It is natural to set boundary conditions
in the following way:

sin (φ0−φ1 − α)=0, sin (φN+1−φN−α)=0, (2)

which corresponds to the free boundaries of the chain, i.e. there are no elements with indexes
n = 0 and n = N + 1. Actually, the system (1) can be interpreted as the Kuramoto � Sakaguchi
model, which is relevant to many physical, chemical and biological systems, e.g. lasers, biocircuits,
electro-mechanical oscillators [6].
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We studied the robustness of stationary solution against phase shift and the level of disorder in
the natural frequencies in the chain of phase oscillators. We focused on the case of smooth pro�le of
the stationary solution. Under this assumption we shown that phase shifts of certain values make
the regions of existence of stable synchronous regime even wider in comparison to the case of zero
phase shift. This result may be counter-intuitive because phase shift is believed to be harmful for
synchronization in this case.

Also, in this system we observe di�erent patterns for di�erent disorder realization. Of main
interest were stationary synchronous solutions. As we expected to see, these clusters dominate
weakly asynchronous states for the phase shifts of the interaction close to zero. Dynamically, the
simplest cluster states is periodic or quasi-periodic one, while for stronger disorder and larger number
of clusters, chaotic states are expected.

Analytical part of the study was supported by RSF grant � 17-12-01534, numerical part of the
study was supported by RFBR grant � 19-52-12053. A.P. thanks S.Lepri for fruitful discussions.
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Lie algebras of heat operators in nonholonomic frame

Buchstaber V.M., Bunkova E.Yu.

Steklov Mathematical Institute RAS

We consider systems of 2g heat equations that de�ne sigma functions σ(z, λ) of the elliptic
curve for g = 1 and of hyperelliptic curves for g = 2 and 3, where z = (z1, z3, . . . , z2g−1), and
λ = (λ4, λ6, . . . , λ4g+2) are the parameters of the universal curve. We show that in an in�nite-
dimensional Lie algebra of linear operators on the ring of smooth functions φ(z, λ), the operators of
this system form a Lie subalgebra LQ with 2g generators over the ring Q[λ], considered as the set of
operators of multiplication by polynomials p(λ) ∈ Q[λ]. The Lie algebra LQ over C as a polynomial
algebra over Q[λ] turned out to be isomorphic to the polynomial Lie algebra over Q[λ] of vector
�elds tangent to the discriminant of a hyperelliptic curve in C2g. As a corollary, we �nd that the
system de�ned by the three operators Q0, Q2 and Q4 is already su�cient to determine the general
solution of the original system of 2g equations.

A transformation is introduced that maps a system of heat equations in φ(z, λ) into a system of
nonlinear equations in ∇ lnφ(z, λ), where ∇ is the gradient of the function in z. This transformation
is a multidimensional analogue of the Cole�Hopf transformation, which turns the one-dimensional
heat equation into the Burgers equation.

Let φ(z, λ) be some smooth solution to the system of heat equations. We denote by Rφ the
graded commutative ring that is generated over Q[λ] by the logarithmic derivatives of φ(z, λ) of
order at least 2. We have obtained an explicit description of the Lie algebra of derivations of the
ringRφ. We will show the close connection of this Lie algebra with our system of nonlinear equations.
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The need to obtain e�ective descriptions of such Lie algebras of di�erentiations is stimulated by
actual problems of describing the dependence on the initial data of solutions to important problems
of mathematical physics. In particular, in the case φ(z, λ) = σ(z, λ) we obtain the well-known
solution to the problem of constructing the Lie algebra of di�erentiations of hyperelliptic functions
of genus g = 1, 2, 3.

We give a construction of systems of 2g graded heat conduction operators Q0, Q2, . . ., Q4g−2.
They determine the sigma functions σ(z, λ) of genus g = 1, 2 and 3 hyperelliptic curves. The
operator Q0 is the Euler operator, and each of the operators Q2k, k > 0 determines the g-dimensional
Schr�odinger equation with quadratic potential in z in the nonholonomic frame of vector �elds in C2g

with coordinates λ.
For any solution φ(z, λ) of the system of heat equations, a graded ring Rφ is introduced. It

is generated by the logarithmic derivatives of the function φ(z, λ) of order of at least 2. The Lie
algebra of derivations of the ring Rφ is presented explicitly. In the case when φ(z, λ) = σ(z, λ), this
leads to a known result of constructing the Lie algebras of di�erentiations of hyperelliptic functions
of genus g = 1, 2, 3.

Dynamical systems on torus in model of Josephson junction:

results, interrelations and conjectures

V.M.Buchstaber1, A.A.Glutsyuk2, S.I.Tertychnyi3

1Steklov Institute of Mathematics, Moscow, Russia. E-mail: buchstab@mi-ras.ru
2Faculty of Mathematics, National Research University Higher School of Economics, Moscow, Russia

2CNRS (ENS de Lyon and Interdisciplinary Center J.-V.Poncelet), France.
E-mail: aglutsyu@ens-lyon.fr
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In 1973 B.Josephson got Nobel prize for predicting tunneling e�ect in superconductivity.
The central subject of the talk is one of the known models of dynamics of Josephson junction. It
is equivalent to a family of dynamical systems on torus that demonstrates phase-lock e�ect, see the
picture.
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The model is described by a family of equations

ϕ′ + sinϕ = f(ωt, u), ω = const, (1)

where f(τ, u) is a 2π-periodic function of τ ; u ∈ U being the parameter of the family. The variable
change τ := ωt, g(τ, u) := f(ω−1τ, u) transforms (1) to the family of systems on torus:{

ϕ̇ = − sinϕ+ g(τ, u)

τ̇ = ω,
(ϕ(mod 2πZ), τ(mod 2πZ)) ∈ T2 = R2/2πZ2. (2)

The classical Poincar�e rotation number de�nes a function ρ : U → R for ω = const. Those level
sets Lr = {u ∈ U | ρ(u) = r} that have non-empty interiors are called the phase-lock areas. As
was shown in [3], the following quantization e�ect holds for system (2): the phase-lock areas Lr
exist only for integer values of r. Note that the quantization e�ect is not observed in the case
of famous circle di�eomorphisms family that led to the notion of the Arnold tongues. Family
(1) with g(τ, u) = f(ω−1τ, u) = B + A cos τ , u = (B,A) ∈ R2 is used in studying the dynamics
of Josephson junction and also in di�erent classical and modern problems in physics, mechanics
and geometry. In what follows we will denote this family by (1)*. See the picture above of the
corresponding phase-lock areas for ω = 0.7.

Set W := ρ−1(R \ Z). Let U = R × A. Consider the family (1) with the function f(τ, u) =
B + h(τ, α) being 2π-periodic in τ and analytic in (τ,B, α) ∈ R×R×A. Then it appears that the
mapping ρ : W → R \ Z is transversally regular, and moreover, analytic, has no critical points, and
for every r ∈ R \ Z the preimage ρ−1(r) is the graph of a function B = ξr(α) analytic on the whole
manifold A. In the case of system (1)∗ we will get functions ξr(A), see [2], and each phase-lock area
is a ¾garland¿ of countable set of components. Each pair of neighbor components is separated
by one point. A separation point is called a constriction, if it does not lie in the B-axis. See [7]
and the picture above.

Complexi�cation and the variable changes Φ = exp(iϕ), z = exp(iωt) transform equations (1)
to projectivizations of linear equations on a vector function (x(z), y(z)) in form of Riccati equations

on the function Φ(z) = x(z)
y(z) . In the case of equation (1)*, setting µ = A

2ω , ℓ =
B
ω , the corresponding

linear systems can be written as follows:(
x′

y′

)
=

(
1

z2
diag(−µ, 0) + 1

z

(
−ℓ 1

2iω
1

2iω 0

)
+ diag(−µ, 0)

)(
x
y

)
. (3)

Systems (3) have only two singular points on the Riemann sphere (at 0 and at ∞). When µ ̸= 0,
both these singularities are irregular and nonresonant. Variable changes E(z) := exp(µz)y(z),
Cmbda := 1

4ω2 − µ2, transform them to special double con�uent Heun equations

z2E′′ + ((ℓ+ 1)z + µ(1− z2))E′ + (C− µ(ℓ+ 1)z)E = 0. (4)

A family of solutions of (1)* that are expressed explicitly via polynomial solutions of equation
(4) was found in [4]. These solutions correspond to appropriate special points on the intersection
of the boundaries of the phase-lock areas with the line B = ℓω. The manifold MP of parameters
(A,B, ω) of such solutions was found. Explicit formulas for the rotation number and the Poincar�e
mapping of the dynamical system on torus were found for all (A,B, ω) ∈MP .

Conditions on the parameters of equation (4) for which its general solution is holomorphic on
C∗ = C \ {0} were obtained in [1, 5]. An explicit function basis in the solution space, one function
being holomorphic everywhere except for ∞, the other one being holomorphic everywhere except for
the origin, was constructed in [5]. It was shown that in the model of Josephson junction the above
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situation, when all the solutions of (4) become single-valued on C∗, corresponds to a constriction
on a phase-lock area.

Together with our colleagues we obtained a series of results on the structure of the phase-
lock areas for dynamical systems (2), and their applications to the dynamics of Josephson junction
in model (1)*, see [2, 6] and references therein. These results are based on the theory of complex
di�erential equations, theory of dynamical systems, theory of double con�uent Heun equations and
their isomonodromic deformation along solutions of Painlev�e 3 equation. Some questions on the
phase-lock areas are closely related to the generalized Riemann�Hilbert problem for system (3).

We will present a survey of the above-mentioned results and problems that remain open.

Research supported by RFBR grant � 17-01-0019 (V.M.B and S.I.T.) and RSF grant � 18-41-05003

(A.A.G.)
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Symmetric powers, commuting polynomial Hamiltonians
and Hydrodynamic type systems
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With every positive integer N and a polynomial F (x, y) ∈ C[x, y], ∂
∂yF (x, y) ̸= 0 we associate a

family of N polynomial Hamiltonian integrable systems on C2N with commuting Hamiltonians. The
degree of the polynomial F (x, y) does not depend on N . Our construction is based on a canonical
transformation of the co-tangent bundle T ∗CN , while the method of integration of the system uses
explicit form of the bi-rational equivalence SymN (C2) → C2N given by this transformation. As a
byproduct we obtain integrable hierarchies of Hydrodynamic type systems and a wide class of their
explicit solutions. In the talk we present recent developments of our results published in [1,2,3].
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Wasserstein distance for estimating the similarity between an attractor and
a repeller for systems that demonstrate the overlapping of these two sets
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Wasserstein distance is a distance function W (µ, ν) de�ned between a pair of probability distri-
butions µ and ν on a given metric space M . If to imagine each distribution as an amount of �dirt�
piled on M , Wasserstein distance is the minimum cost of transformation of one pile into the other.
It is assumed that the cost of this transformation is proportional to the amount of moved dirt and
the distance over which this dirt should be moved.

In this talk, we show how to apply Wasserstein distance for the computation of the similarity
between a chaotic attractor and a chaotic repeller for di�eomorphisms demonstrating the overlapping
of these two sets. As test examples, we consider three di�erent two-dimensional di�eomorphisms.
The �rst example is a map with a strange nonchaotic attractor given on a torus [1]. The second
example is Anosov di�eomorphism perturbed by Mobius transformation. This map is hyperbolic
given on a torus. It is important to note, that despite the fact that these two examples demonstrate
visual overlapping of numerically obtained attractor and repeller, topologically their dynamics are
conservative, since an attractor, as well as a repeller, in these maps coincide with the whole phase
space. The last, third, example is the Chirikov map perturbed by Mobius transformation. This map
is not hyperbolic, invariant manifolds of its saddle periodic orbit may intersect non-transversally
and, therefore, stable, as well as completely unstable, periodic orbits may appear in this case. Thus,
in contrast to all previous examples, the perturbed Chirikov map demonstrates the mixed dynamics
phenomenon when an attractor of the system intersects with a repeller but does not coincide with it
[2]. By computation of Wasserstein distance for all three di�eomorphisms, we show that the proposed
method detects perfectly observed in numerical experiments distinguishes between an attractor and
a repeller.

This work is supported by Ministry of Science and Higher Education of the Russian Federation
(project No. 2019-220-07-4321).
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Puiseux series, invariant algebraic curves and integrability
of planar polynomial dynamical systems
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Establishing integrability of an ordinary di�erential equation or a system of ordinary di�erential
equations is an important problem from theoretical and practical points of view. The system of
�rst�order ordinary di�erential equations

xt = P (x, y), yt = Q(x, y), P (x, y), Q(x, y) ∈ C[x, y] (1)

with coprime polynomials P (x, y) and Q(x, y) is called integrable with the �rst integral I(x, y) ̸≡
const de�ned in a domain D of full Lebesgue measure in C2 if the function I(x, y) remains constant
along any solution (x(t), y(t)) in D. The following equation X I = 0 holds whenever I(x, y) is of class
at least C1 in D. In this relation X = P∂x+Q∂y is the vector �eld associated to system (1). If there
exists a function R(x, y) such that the product of the di�erential form dω = P (x, y)dy −Q(x, y)dx
and R(x, y) makes the form exact, then this function is called an integrating factor of the di�erential
form and dynamical system (1).

Suppose a di�erential system under consideration possesses the �rst integral I(x, y) that is a
Liouvillian function; then we shall say that dynamical system (1) is Liouvillian integrable. A function
is Liouvillian if it can be expressed as a �nite superposition of algebraic functions, quadratures and
exponential of quadratures over the �eld of rational functions C(x, y). It is known [1] that dynamical
system (1) is Liouvillian integrable if and only if it has an integrating factor R(x, y) given by

R(x, y) = exp

{
g(x, y)

f(x, y)

} r∏
j=1

F
sj
j (x, y), (2)

where g(x, y), f(x, y), F1(x, y), . . ., Fr(x, y) are bivariate polynomials with coe�cients from the
�eld C and s1, . . . ,sr ∈ C. The algebraic curve Fj(x, y) = 0 given by the polynomial Fj(x, y) in
expression (2) is an invariant algebraic curve of dynamical system (1). In other words, the polynomial
Fj(x, y) satis�es the following partial di�erential equation XFj = λj(x, y)Fj , where λj(x, y) is a
bivariate polynomial called the cofactor of the algebraic curve Fj(x, y) = 0. Analogously, the function
E(x, y) = exp {g(x, y)/f(x, y)} is an exponential invariant of dynamical system (1). Consequently,
the problem of establishing Liouvillian integrability or non�integrability of a dynamical system can
be reduced to the problem of constructing all irreducible invariant algebraic curves of X and all
exponential invariants of X . The main di�culty in �nding irreducible invariant algebraic curves lies
in the fact that bounds on the degrees of Fj(x, y) are as a rule unknown in advance.

The aim of the talk is to present a general method of constructing all irreducible invariant alge-
braic curves of dynamical system (1) [2, 3]. The main idea of the method is to use the factorization
of invariant algebraic curves in the algebraically closed �eld of Puiseux series. We shall derive the
general structure of irreducible invariant algebraic curves and their cofactors for any polynomial
dynamical system of the form (1).

As an application of our results we shall solve completely the problem of Liouvillian integrability
for a number of physically relevant dynamical systems including the famous Du�ng and Du�ng�van
der Pol oscillators [2, 3]. In addition, we shall demonstrate that a similar method is applicable in
the case of time�dependent polynomial dynamical systems in the plane [4].

This research was supported by Russian Science Foundation grant 19�71�10003.

44



References

[1] Singer M.F. Liouvillian �rst integrals of di�erential systems. Trans. Amer. Math. Soc., 333,
1992, 673�688.

[2] Demina M.V. Invariant algebraic curves for Li�enard dynamical systems revisited. Appl. Math.
Lett., 84, 2018, 42�48.

[3] Demina M.V. Novel algebraic aspects of Liouvillian integrability for two�dimensional polynomial
dynamical systems. Phys. Lett. A, 382 (20), 2018, 1353�1360.

[4] Demina M.V. Invariant surfaces and Darboux integrability for non�autonomous dynamical
systems in the plane. J. Phys. A: Math. Theor., 51, 2018, 505202.

Optimal self-similar metrics of expansive homeomorphisms
and expanding continuous maps
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It is known since the 1980s that any expansive homeomorphism on a metrizable compactum
possesses some Lyapunov or adapted metric. This means that the homeomorphism contracts (resp.
expands) local stable (resp. unstable) �manifolds� of a small radius in this metric. Simultaneously,
an analogous result was obtained for positively expansive continuous maps on compacta, that is,
such a map expands small distances in a suitable metric. The author [1] have sharpened this result
in the case of homeomorphism: there exists a Lyapunov metric such that the homeomorphism
on local stable (resp. unstable) �manifolds� is approximately representable on a small scale as a
contraction (resp. expansion) with constant coe�cient λs (resp. λ

−1
u ) in (0; 1). Precisely speaking,

ρ(f(x), f(y))/ρ(x, y) tends to λs (resp. λ
−1
u ) for two points x, y on one local stable (resp. unstable)

�manifold�, when ρ(x, y) → 0, where f is the homeomorphism under discussion and ρ is a metric
constructed. Also, the homeomorphism together with its inverse are Lipschitz with constants λ−1

u

and λ−1
s , respectively, with respect to the metric constructed. Moreover, for homeomorphisms with

local product structure the lower bounds for the contraction constants λs and expansion constants
λu are attained simultaneously for some �optimal� metric that satis�es all the conditions described.
These results can be immediately transferred to the case of positively expansive continuous maps,
though this fact was not pointed out in [1].

Recently, A. Artigue [2] have constructed the so-called self-similar metrics. For the case of home-
omorphism f , the metric is called self-similar if max{ρ(f(x), f(y)), ρ(f−1(x), f−1(y))} = λ−1ρ(x, y)
with some constant λ ∈ (0; 1), provided ρ(x, y) is small enough. In particular, on a small scale,
the homeomorphism contracts (resp. expands) local stable (resp. unstable) �manifolds� with exact
constant λ (resp. λ−1). Respectively, for the case of positively expansive maps, the equality de�ning
self-similar metric takes the form ρ(f(x), f(y)) = λ−1ρ(x, y).

Thus, we deal with asymptotic estimates for rate of contraction/expansion, while Artigue states
the exact equalities. On the other hand, we consider distinct constants λs, λu for contraction and
expansion, and discuss simultaneous attainability of their lower bounds at some metric, while Artigue
simply considers case where these constants are equal.

In the present talk, we adapt Artigue's approach to sharpen our results and to introduce self-
similar metrics with distinct contraction and expansion constants λs and λu. In fact, the basic idea
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is only to use the sup operation instead of traditional summation in the well-known formula for
Lyapunov metric (such an expression was written in [3] and when used in [2]) and in analogous
formulas in [1] that were based on the latter!
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Small Perturbations of Smooth Skew Products
and Sharkovsky's Theorem
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1. Let I = I1 × I2 be a closed rectangle in the plane (I1, I2 are closed intervals of the straight
line R1, Ik = [ak, bk] for k = 1, 2). We consider a map F : I → I satisfying the equality

F (x, y) = (f(x) + µ(x, y), g(x, y)) for any (x, y) ∈ I. (1)

We suppose that the map (1) is C1-smooth on the rectangle I, and the map f : I1 → I1 satis�es
the following conditions:
(if ) f(∂I1) ⊂ ∂I1, where ∂(·) is the boundary of a set;
(iif ) f is Ω-stable in the space of C1-smooth maps of the interval I1 into itself with the invariant
boundary.

We suppose also that for a C1-smooth function µ (of variables x and y) the following property
holds:
(iµ) the equalities µ(x, a2) = µ(x, b2) = 0 are correct for every x ∈ I1; and the equalities µ(a1, y) =
µ(b1, y) = 0 are correct for every y ∈ I2.

Moreover, we consider functions µ = µ(x, y) so small that the following inequality is valid:
(iiµ) ||µ||1, (1, 1) < ε, where ε is found for an arbitrary δ > 0 by the condition of f - Ω-stability in
the space of C1-smooth self-maps of the interval I1 with the invariant boundary, and || · ||1, (1, 1) is
the standard C1-norm of the linear normalized space of C1-smooth maps of the rectangle I into the
straight line R1 (that contains the interval I1).

Let C1
ω(I) be the space of C

1-smooth maps (1) such that f satis�es conditions (if ) � (iif ), and
µ satis�es conditions (iµ) � (iiµ).

This talk is the presentation of results of the paper [1]. We prove here that the Sharkovsky's order
is reserved for maps from the space C1

ω(I). But the proof of this claim requires a large preliminary
work. Therefore, �rst of all, we prove existence of the invariant set (under the map F ∈ C1

ω(I)) of
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continuous pairwise disjoint curvelinear �bers over the points of the nonwandering set Ω(f) of the
map f . Then we rectify these �bers, deduce the map under consideration on the above set to the
skew product of interval maps on the set Ω(f)× I2, and apply Kloeden's result on the preservation
of the Sharkovsky's order for continuous skew products of interval maps (see [2]).

This work is supported in the part by Ministry of Science and Education of Russian Federation,
project No 1.3287.2017, target part.
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About optimal harvesting of renewable resource
at a �nite period of time
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The problem of rational use of renewable resources is one of the important tasks in mathematical
biology. The optimal harvesting of the excess portion of individuals from the population contributes
to more intensive reproduction of resources. In recent years a large number of works devoted to
analytical and numerical study of dynamics regimes of two-age population have been published, for
example [1, 2]. In more detail, the current state of research in the �eld of optimal resource extraction
for di�erent models of exploited populations is described in [3].

This paper considers the structured population at which individuals are divided into age or
typical groups, given a normal autonomous system of di�erence equations. For such a population,
the task of optimal collection of a renewable resource at a �nite period of time.

De�ne xi(k), i = 1, . . . , n the number of resources of each of the n ≥ 2 of the species or classes
at the moment k = 0, 1, 2, . . . . We will consider the model of the exploited population in the form

x(j + 1) = F
(
(1− u(j))x(j)

)
, j = 0, 1, 2, . . . , k − 1,

where x(j) =
(
x1(j), . . . , xn(j)

)
∈ Rn+, R

n
+
.
=
{
x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0

}
,

u(j) =
(
u1(j), . . . , un(j)

)
∈ [0, 1]n � control that can be varied to achieve the best collection result,

(1− ui(j))xi(j) � number of remaining resource of the i-th species at the moment k after harvesting,
F (x) =

(
f1(x), . . . , fn(x)

)
, fi(x) � real non-negative functions de�ned for all x ∈ Rn+ of them are

fi(0) = 0, fi ∈ C2(Rn+), and Jacobi matrix
(
∂fi
∂xj

)
i,j=1,...,n

is nondegenerate for all x ∈ Rn+.

Let Ci ≥ 0, i = 1, . . . , n � the cost of the conditional unit of each class, then the cost of all all

extracted products at the moment k is equal z(k) =
n∑
i=1

Cixi(k)ui(k).
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De�ne u(k)
.
= (u(0), . . . , u(k − 1)), where u(j) = (u1(j), . . . , un(j)) ∈ [0, 1]n, j = 0, 1, . . . , k − 1.

For any k = 1, 2, . . . consider the function

h
(
u(k), x(0)

) .
=

k−1∑
j=0

z(j) =

k−1∑
j=0

n∑
i=1

Cixi(j)ui(j),

this is equal to the value of a resource extracted for k seizures.

Theorem 1. Let the function D(x)
.
=

n∑
i=1

Ci
(
fi(x)− xi

)
reaches the maximum value in the only

one point x∗ ∈ Rn+ è x∗i ≤ fi(x
∗) ̸= 0 for any i = 1, . . . , n. Then for any x(0) ∈ Rn+ such that

xi(0) ≥ x∗i , i = 1, . . . , n, function h
(
u(k), x(0)

)
reached the highest value

h
(
u∗(k), x(0)

)
= (k − 1) ·D(x∗) +

n∑
i=1

Cixi(0)

on multiple [0, 1]kn at the following exploitation mode: (1) if k = 1, then u∗(0) = (1, . . . , 1);

(2) if k = 2, then u∗(2) =
(
u∗(0), u∗(1)

)
, u∗(0) =

(
1− x∗1

x1(0)
, . . . , 1− x∗n

xn(0)

)
, u∗(1) = (1, . . . , 1);

(3) if k ≥ 3, then u∗(k) =
(
u∗(0), . . . , u∗(k − 1)

)
, where u∗(0) =

(
1 − x∗1

x1(0)
, . . . , 1 − x∗n

xn(0)

)
;

u∗(j) =
(
1− x∗1

f1(x∗)
, . . . , 1− x∗n

fn(x∗)

)
ïðè j = 1, . . . , k − 2; u∗(k − 1) = (1, . . . , 1).

The work was carried out under the guidance of Professor of the Department of Functional
Analysis and its Applications of VlSU L.I. Rodina.
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We solve some computational problems for triangulated closed three-dimensional manifolds P
using groups of simplicial homology and cohomology modulo 2. One of the interesting and important
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tasks of the computational topology is the development of algorithms for calculating the intersection
numbers of cycles of a closed manifold. For two-dimensional manifolds, the �rst versions of its
solution were proposed in [1] and [2]. In [3], this problem is solved for a simple (n− 1)-dimensional
cycle x and one-dimensional cycle y of a manifold of arbitrary dimension n. But the proposed
algorithm was not applicable for the case of a non-simple cycle x.

In this work two e�cient algorithms for computing intersection numbers of 1- and 2-dimensional
cycles are developed. We show that computational complexity of described algorithms are O(|P |)
and O(|P | log |P |) respectively, where |P | is the size of the polyhedron, i.e. the number of simplices
in the model. Thus, the described algorithms have similar or better e�ciency than the previously
developed algorithms, but can be applied to the cases not covered by existing algorithms.

Using these algorithms it is possible to obtain a basis of the cohomology group H1(P ) (H2(P ))
from a given basis of the homology group H2(P ) (H1(P )) of complementary dimension. This co-
homology group basis can be used for constructing covering polyhedron P̂ of a speci�c form. This
covering polyhedron, in turn, can be used to reduce the problem on �nding conditional minimum in
original polyhedron P , like �nding shortest path or cycle inside particular homology class, to �nding
absolute minimum in covering polyhedron P̂ .
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Solution-giving formula to Cauchy problem
for multidimensional parabolic equation with variable coe�cients

Florido Calvo F.1, Remizov I.2

1,2National Research University Higher School of Economics
2Laboratory of Topological Methods in Dynamics

This talk is based on two papers [1,2]. We consider for integer dimension d ≥ 1, x =
(x1, · · · , xd) ∈ Rd, t ≥ 0 and u : [0,∞) × Rd −→ R and set the Cauchy problem for a second-
order parabolic partial di�erential equation

{
u′t(t, x) =

∑d
j=1(aj(x))

2u′′xjxj (t, x) + ⟨b(x),∇u(t, x)⟩+ c(x)u(t, x) = Hu(t, x)

u(0, x) = u0(x) (1)

where aj and c are R-valued functions for each j = 1, · · · , d, and b is an Rd-valued function, and
all of the coe�cients are bounded and uniformly continuous.

The objective is to express the solution of (1) in terms of aj , bj , c and u0 assuming that the
closure of the operator H is an in�nitesimal generator of the C0-Semigroup

(
etH
)
t≥0

.
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The solution to (1) is obtained by means of theory of C0-Semigroups [3], which states that
the solution is given by u(t, x) = etHu0(x), we then apply the Cherno� theorem [4] to a specially
constructed family of operators (S(t))t≥0 explicitly de�ned in terms of aj , bj and c by

(S(t)f) (x) =
1

4d

d∑
j=1

(
f(x+ 2

√
daj(x)

√
tej) + f(x− 2

√
daj(x)

√
tej)

)
+

1

2
f(x+ 2tb(x)) + tc(x)f(x) (2)

(Hφ) (x) =
d∑
j=1

(aj(x))
2φ′′(x)xjxj + ⟨b(x),∇φ(x)⟩+ c(x)φ(x) (3)

Where ej ∈ Rd is a constant d-dimensional vector with 1 at position j and 0 at the other d− 1
positions. And the solution to (1) is obtained by

u(t, x) =
(
etHu0

)
(x) = lim

n−→∞
(S(t/n)nu0) (x)

Where S(t/n) is obtained via substitution of t by t/n in (2) and S(t/n)n is a composition of n
copies of linear bounded operator S(t/n).

We also state the conditions that guarantee that the closure of H generates a C0-Semigroup, see
[2] for details.
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Formulas that Represent Cauchy Problem Solution
for Momentum and Position Schr�odinger Equation
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This talk is based on paper [1]: the purpose is to derive two formulas representing solutions of
Cauchy problem for two Schr�0dinger equations:
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1. One-dimensional momentum space equation with polynomial potential

We consider for K ∈ N the following Cauchy problem for x ∈ R, t ≥ 0{
i ∂∂tψ(t, x) =

∑K
k=1

∂k

∂xk

(
ak(x)

∂k

∂xk
ψ(t, x)

)
= Hψ(t, x)

ψ(0, x) = ψ0(x) (1)

where ak : R −→ R are bounded smooth functions with bounded derivatives up to (2k)-th
order for each k = 1, · · · ,K, while a0 : R −→ R is measurable but may be unbounded.
The operator H is self-adjoint and de�ned on some dense linear subspace of L2(R).The initial
condition ψ0 : R −→ C ∈ L2(R) which is a Hilbert space over C.
The objective is to �nd a formula for the solution ψ in terms of the coe�cients such that for
each t ≥ 0 we have ψ(t, ·) ∈ L2(R) and equation (1) is satis�ed in sense of L2(R).
This solution is known to exist for each ψ0 ∈ L2(R) and is provided by resolving C0-Semigroup
for the equation considered because the operator is self-adjoint. We employ general approach
to �nd an explicit formula for the resolving C0-Semigroup and thus reaching the proposed goal.

2. Multidimensional position space equation with polynomial potential

For arbitrary �xed d ∈ N we obtain the solution of the Cauchy problem for a d-dimensional
Schr�0dinger equation. In the space L2(R) over C we study the problem for t ∈ R, x ∈ Rd.{

ψ′
t(t, x) = 1

2 i
(∑d

m=1 ψ
′′
xmxm(t, x)

)
− iV (x)ψ(t, x)

ψ(0, x) = ψ0(x) (2)

We assume V : Rd −→ R is measurable and has a locally summable second power, V ∈
Lloc2 (Rd).

Let us consider the Cauchy Problem for the Schr�odinger equation{
iψ′
t(t) = Hψ(t)

ψ(0) = ψ0 (3)

In general case, the Hamiltonian H is a self-adjoint operator in L2(Q) with dense domain
Dom(H) ⊂ L2(Q), this guarantees due to the Stone Theorem that for each t ∈ R, the operator
e−itH exists and can be shown to be unitary. Moreover, the family (e−itH)t∈R is a one-parameter
C0-Semigroup of unitary linear bounded operators with in�nitesimal generator iH. The Cauchy
problem (3) then has unique solution provided by the formula ψ(t) = e−itHψ0.

If we want to determine the evolution of this system and succeed �nding a strongly continuous
family of bounded self-adjoint operators that are Cherno�-tangent to the operator H, then we can
apply the following theorem which allows us to obtain the solution for Cauchy Problem (3). We
obtain such an expression for (3) when is representable in the form (1) or (2).

Theorem(Remizov 2016). Let F be a complex Hilbert space and let Dom(H) ⊂ F be its dense
linear subspace. Suppose that the operator H : Dom(H) −→ F is linear and self-adjoint and real
number a is non zero. Suppose that we have such family (W (t))t≥0 of bounded linear operators in
F that (W (t))∗ = W (t) ∀t ≥ 0, and denoting S(t) = I +W (t), the family (S(t))t≥0 is Cherno�-
tangent to H. Set R(t) = exp[ia(S(t) − I)] = exp[iaW (t)]. Then there exists a C0-Semigroup
(eiatH)t≥0, family (R(t))t≥0 is Cherno�-equivalent to this semigroup, and for each f ∈ F and t0 ≥ 0
the following equalities hold with respect to the norm in F :
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eiatHf = lim
n−→∞

R(t/n)nf = lim
n−→∞

exp[ianW (t/n)]f 0 ≤ t ≤ t0

and

lim
n−→∞

sup
t∈[0,t0]

∥ eiatHf − lim
j−→∞

j∑
k=0

(ian)k

k!
W (t/n)kf ∥= 0 (4)

We express the solution of (1) in terms of its coe�cients and provide a family of translation
operators that is Cherno�-tangent to the self-adjoint operator from (1) and then apply this theorem.
The same is done for �nding the solution of (2).
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On some parabolic equations for measures
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LetH be a separable Hilbert space, BH is σ�algebra of its Borel subsets, M(H) is the set of Borel
measures on BH, UH is the algebra of cylindrical subsets in H, Mc(H) is the family of cylindrical
measures on UH, B and D are linear bounded operators on H, B is symmetric and nonnegative,
and B is nuclear.

De�nition 1. We will call the function µ̃(y) =
∫
H e

i(x,y)dµ(x), where y ∈ H, Fourier transform
of the measure µ ∈ Mc(H).

De�nition 2. If µ ∈ M(H), then let us denote through tr(Bµ ′′) such a measure λ ∈ Mc(H),
that λ̃(φ) = −(Bφ,φ)µ̃(φ) (of course, if it exists), and through [(Dµ ′, ·)+trD·µ]� such ν ∈ Mc(H),
that ν̃(φ) = −µ̃ ′

Dφ(φ) (here the derivative is understood in the sense of Gato).

De�nition 3. Let L : M(H) → Mc(H) be some linear operator with the domain DL. The
family of measures µ(t), t > 0, lying in DL, is called the weak solution of the equation µ ′

t = Lµ with
initial conditions µ0 ∈ M(H), if the next two conditions are met:

1)
d

dt

∫
H fc dµ(t) =

∫
H fc d(Lµ(t)) for any continuous cylindrical bounded function fc on H;

2) limt→+0

∫
H f dµ(t) =

∫
H f dµ0 for any continuous bounded function f on H.
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We call the fundamental solution of such an equation, the family of its solutions is [G(t)](x),
t > 0, depending on the parameter x ∈ H, with initial conditions [G(0)](x) = δx.

Let's denote by [G0(t)](x) the fundamental solution of the equation

µ ′
t =

1
2

tr(Bµ ′′)−
[
(Dµ ′, ·) + trD · µ

]
.

Let the symbol CT
x,A means, for �xed T > 0, x ∈ H and A ∈ BH, the space of all continuous

functions f on the segment [0, T ], taking values in H, such that f(0) = x and f(T ) ∈ A. For any

kits of points 0 < t1 < . . . < tn < T and sets A1, . . . , An ∈ BH, the subsets I
t1,··· ,tn
A1,··· ,An

=
{
f
∣∣ f(ti) ∈

Ai, i = 1, . . . , n
}
form a semiring K in CT

x,A. Let's set the measure U
T
x,A on it by the equality

UTx,A(I
t1,··· ,tn
A1,··· ,An

) =

∫
A1

[G0(t1)](x)(dy1)

∫
A2

[G0(t2 − t1)](y1)(dy2) · . . . ·

·
∫
An

[G0(tn − tn−1)](yn−1)(dyn)[G0(T − tn)](yn)(A).

Theorem 1. The measure UTx,A on K ⊂ CT
x,A has unique countably-additive continuation to

Borel measure on CT
x,A.

De�nition 4. We will call a conditional generalized Ornstein � Uhlenbeck measure the contin-
uation of the measure UTx,A, described in theorem 1.

Theorem 2. Let V : R+ ×H → C be a function, continuous by the totality of variables, and

there are functions C1, C2 ∈ L1,loc(R+) and number 0 6 r 6 2, such that for any t ∈ R, x ∈ H, the

next inequalities are satis�ed:

|V (t, x)| 6 C1(t) exp
{
o(∥x∥r)

}
and ReV (t, x) 6 C2(t)o(∥x∥r).

Then the equation ν ′
t = 1

2 tr(Bν
′′) −

[
(Dν ′, ·) + trDν

]
+ V ν has a weak fundamental solution

[GV (t)](x) of the form

[GV (t)](x)(A) =

∫
CT

x,A

exp
{∫ t

0
V (s, q(s)) ds

}
U tx,A(dq),

where A ∈ BH. Also, if ν0 ∈ M(H) and
∫
H exp{∥x∥r}ν0(dx) < ∞, then the formula ν(t) =∫

H[GV (t)](x)ν0(dx) sets the weak solution of this equation with the initial condition ν0.
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Symmetry breaking in a system of two coupled microbubble contrast agents
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In this work we study a dynamical system that describes behavior of two di�erent interacting
microbubble contrast agents. Contrast agents are micro-meter size gas-�lled bubbles, which are
encapsulated into a visco-elastic shell [1, 2]. Such bubbles can be used for various biomedical
applications, for example, for enhancing ultrasound visualization of blood �ow. It is known that
contrast agents can demonstrate complex dynamics and its type is important for applications [1, 3].

The dynamics of two interacting bubbles is described by a non-autonomous system of four
di�erential equations (or an equivalent autonomous system of �ve equations). If the equilibrium
radii of both bubbles are the same then the system describing their dynamics is invariant with
respect to the symmetry: R1 ↔ R2, Ṙ1 ↔ Ṙ2, where R1(t) and R2(t) denote the �rst and second
bubbles' radii respectively and dot is the derivative with respect to time. This symmetry leads to
the appearance of the three-dimensional invariant manifold R1 = R2, Ṙ1 = Ṙ2, the orbits lying in
which can only be periodic or chaotic with one positive Lyapunov exponent. Solutions embedded in
this manifold are characterized by completely in-phase (synchronous) oscillations of both bubbles.
Some of these solutions can be asymptotically stable (attractive). Various synchronous (periodic,
chaotic) and asynchronous (periodic, quasiperiodic, chaotic and hyperchaotic) states were studied
recently in work [4].

The main aim of this talk is to study the in�uence of destruction of the synchronization manifold
on various dynamical regimes in the system. We introduce a perturbation of the equilibrium radius
of one of the bubbles which leads to the symmetry breaking. Since synchronous attractors are
essentially de�ned by presence of the symmetry, it is natural to assume that they are in general more
sensitive to the symmetry breaking. We show that multistable states consisting of synchronous and
asynchronous attractors often transit to monostable states via crisis of a previously synchronous
state. Asynchronous states, especially hyperchaotic ones, are in general more stable with respect
to symmetry breaking perturbations. However we also demonstrate that in some cases symmetry
breaking in a monostable synchronous state does not lead to qualitative changes in the dynamics.
Further we consider di�erent transition scenarios of symmetry breaking that can lead to both death
of old multistable states or to the birth of new multistable ones.

This work is supported by RSF grant 19-71-10048.
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Instability induced by prey-taxis in a prey-predator model
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The possibility of spatial structure formation in the activator-inhibitor systems, if di�usion co-
e�cient for inhibitor is considerably greater than that for activator, was shown by Turing. Later,
a number of papers established that this condition is unnecessary for the Turing instability. Con-
ditions for the emergence of spatial and spatiotemporal patterns after �ow-induced instabilities
[1] of spatially uniform populations were derived by Malchow [2, 3] and illustrated by patterns in
a minimal phytoplankton-zooplankton model. Instabilities in the uniform distribution can arise, if
phytoplankton and zooplankton move with di�erent velocities, regardless of which one is faster. This
mechanism of generating patchiness is more general than the Turing mechanism, which depends on
strong conditions on the di�usion coe�cients. Present study deal with a prey-predator model for
spatiotemporal dynamics of phytoplankton, zooplankton and nutrients. The system is described by
reaction-di�usion-advection equations in a one-dimensional vertical column of water in the surface
layer. Advective term of the predator equation represents the vertical movements of zooplankton
with velocity, which is assumed to be proportional to the gradient of phytoplankton density. This
study aimed to determine the conditions under which these movements (taxis) lead to the spatially
heterogeneous structures generated by the system in the case of equal di�usion coe�cients of all
model components.

Necessary conditions for the �ow-induced instability were obtained through linear stability anal-
ysis. Depending on the parameters of the model local kinetics, increasing the taxis rate leads to
Turing or wave instability. This fact is in good agreement with conditions for the emergence of
spatial and spatiotemporal patterns derived by other authors. While the taxis exceeding a certain
critical value, the wave number corresponding to the fastest growing mode remains unchanged. This
value determines the type of spatial structure.
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Cluster Synchronization in Fully Coupled Genetic Networks
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In order to describe the mathematical model of an oscillatory genetic network, we consider an
isolated self-repressor gene. By [1,2], the change of the concentration u = u(t) of the corresponding
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protein in the course of time has the form u̇ = −u + α(1 + uγ(t − h))−1, where α, γ, and h are
positive constants. Next, we suppose that there are m genes of this kind, m ≥ 2, which are related
as �each to all.� As a result, we obtain the system

u̇j = −uj +
α

1 + uγj (t− h)
+

m∑
s=1,s ̸=j

β

1 + uγs (t− h)
, j = 1,m, (1)

where α, β, γ, and h are positive parameters. In the present paper, we study the problem on
attractors of system (1) for the case in which the parameter γ = 1/ε is large (0 < ε ≪ 1) and the
remaining parameters have the order of unity (β > α > 1). Next, in system (1), we make the change
of variables uj = expxj , j = 1,m. As a result it acquires the form

ẋj = −1 + exp(−xj)
(

α

Ω(xj(t− h), ε)
+

m∑
s=1,s ̸=j

β

Ω(xs(t− h), ε)

)
, (2)

where j = 1,m, Ω(y, ε) = 1 + exp(y/ε). System (2) is complicated; thus, we do not try to perform
a complete analysis but restrict our considerations to its special periodic solutions, known as two-
cluster synchronization modes. To describe the above-mentioned modes, we �x an arbitrary positive
integer k, 1 ≤ k ≤ m − 1, and suppose that the set of indices 1 ≤ j ≤ m splits into two disjoint
sets A and B that consist of k and m− k elements, respectively; i.e., {1, 2, . . . ,m} = A ∪ B. Then,
obviously, system (2) admits solutions with the components xj = v(t) for j ∈ A, xj = w(t) for
j ∈ B, where the variables v and w satisfy the auxiliary system

v̇ = −1 + exp(−v)
(

αk
Ω(v(t− h), ε)

+
βm−k

Ω(w(t− h), ε)

)
,

ẇ = −1 + exp(−w)
(

αm−k
Ω(w(t− h), ε)

+
βk

Ω(v(t− h), ε)

)
,

(3)

where αs = α+(s−1)β and βs = sβ, s = 1,m. If system (3) has an inhomogeneous periodic solution
(such that v(t) ̸≡ w(t)), then the corresponding solution of the original system (2) is referred to
as a periodic two-cluster synchronization mode (see [3]). Thus, the problem of the existence of
two-cluster synchronization modes can be reduced to �nding inhomogeneous periodic solutions of
system (3) (see also [2,3]).

Theorem. Let k, 1 ≤ k ≤ m − 1, be an arbitrarily �xed positive integer, let the parameters
α, β satisfy and the delay h satisfy the estimates β > α > 1, h < ln(βk/αk). Then there exists a
su�ciently small εk > 0 such that, for all 0 < ε ≤ εk system (3) admits an exponentially orbitally
stable inhomogeneous cycle Ck : (v, w) = (vk(t, ε), wk(t, ε)), whose component vk(t, ε) is alternating
and the component wk(t, ε) is strictly positive.

The cycle Ck generates an family of periodic two-cluster synchronization modes given by relations
xj = vk(t, ε) for j ∈ A, xj = wk(t, ε) for j ∈ B. Note that the number of such modes coincides with
the number of k-combinations in the set of n elements.

In addition, note that we have found only the simplest periodic two-cluster synchronization
modes, whose component v is alternating, and the other component w is strictly positive. How-
ever, as numerical analysis shows, system (2) with m ≥ 9 can additionally have stable two-cluster
synchronization modes whose both components v and w are alternating.

This work was funded by RFBR according to the research project 18-29-10055.
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The 1:3 resonance under reversible perturbations
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We study how reversible non-conservative perturbations in�uence on the 1:3 resonance, i.e. bi-
furcations of �xed points with eigenvalues e±i2π/3, in the conservative cubic H�enon maps with
positive and negative cubic term. We pay special attention to local symmetry-breaking bifurcations
of 3-periodic orbits which lead to the emergence of nonsymmetric non-conservative orbits. Such
bifurcations turn out to be the so-called reversible pitchfork bifurcations. Due to these bifurcations,
for the perturbed map with positive cubic term, a symmetric elliptic orbit becomes a symmetric
saddle orbit and in its neighborhood a pair of nonsymmetric asymptotically stable and completely
unstable orbits appears. For perturbations of the cubic H�enon map with the negative cubic term,
under reversible pitchfork bifurcations a symmetric saddle orbit breaks into a symmetric elliptic
orbit surrounded by two nonsymmetric saddles. Moreover, the Jacobian in one saddle is greater
than 1 and the Jacobian in the other saddle is less than 1. The presence of these nonsymmetric
orbits may indicate mixed dynamics. In addition, we present various methods to construct reversible
non-conservative perturbations which break down the conservative dynamics in the two-dimensional
H�enon-like maps. This is a joint work with A.O.Kazakov, E.A. Samylina, A. I. Shyhmamedov.

On discrete Lorenz-like attractors

Gonchenko S.V.

Lobachevsky State University of Nizhny Novgorod, Russia
e-mail: sergey.gonchenko@mail.ru

We give an overview of some results on recently discovered strange attractors of new types,
the so-called discrete Lorenz attractors. These attractors can exist in three-dimensional maps �
di�eomorphisms, and they belong to the class of homoclinic attractors, that is, strange attractors
containing only one saddle �xed point and, hence, entirely its the unstable invariant manifold. We
discuss the most important features of these attractors, such as their geometric and homoclinic
structures, phenomenological scenarios of their appearance, pseudohyperbolic properties, etc. We
also observe various types of such discrete Lorenz-like attractors.
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On discrete Lorenz attractors in a Celtic stone model

Gonchenko A.S.1, Samylina E.A.2

1Laboratory of dynamical and control systems
Lobachevsky State University of Nizhny Novgorod
2Laboratory of topological methods in dynamics

National Research University Higher School of Economics

We consider the problem on the existence of discrete Lorenz attractors in a nonholonomic Celtic
stone model. To this end, in two-parameter families of such models of certain types, the main local
and global bifurcations leading to both the appearance and destruction of the attractors are studied.
In the plane of governing parameters (one of them is the angle of dynamical asymmetry of the stone,
and the other is the total energy), we construct the corresponding bifurcation diagram, where the
region of existence of the discrete Lorenz attractor is constructed and its boundaries are explained.
We point out the similarities and di�erences in the scenarios of the emergence of the discrete Lorenz
attractor in the nonholonomic model of Celtic stone and the attractor from the classical Lorenz
model.

Absorbing domain and Smale horseshoe in multidimensional Henon map

Grechko D.A.,1 Belykh V.N.1,2

1Department of Mathematics, 2Department of Control Theory and Dynamics of Systems
1Volga State University of Water Transport, 2Lobachevsky State University, Nizhny Novgorod

In this talk we consider a multidimensional Henon map of a general form [1, 2]
x̄ = f(x) +

n∑
i=1

aivi,

v̄1 = x,

v̄i = vi−1, i = 2, n,

(1)

where ai ∈ R1, f(x) is the quadratic function of the form

f(x) = µ− x2, µ ∈ R1. (2)

This map written in reverse numbering with the help of the variables change vj = uj + x, j =
1, n, u0 ≡ 0 takes the next formx̄ = x+

n∑
j=1

ajuj + F (x),

ūj = −a1u1 − a2u2 − ...− (aj−1 − 1)uj−1 − ...− anun − F (x),

(3)

where u0 ≡ 0, F (x) =
( n∑
i=1

ai − 1
)
+ f(x).

This map is the Lurie-type map with one nonlinearity and admits the comparison principle [3].
Using this approach for some region of parameters we prove the existence of absorbing domain G
containing an attractor of the Henon map (3). We �nd another region of parameters for which G is
no longer absorbing domain. We prove that this domain G and its image form the multidimensional
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Smale horseshoe. Therefore in this region of parameters the chaotic component of non-wandering
set exists.

This work was supported by the Russian Foundation for Basic Research under Grant No. 18-
01-00556 and Russian Scienti�c Foundation (numerics) under Grant No. 19-12-00367.

References

[1] Gonchenko A.S., Gonchenko S.V. and Shilnikov L.P. Towards scenarios of chaos appearance in
three-dimensional maps Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 1, pp. 3�28 (Russian).

[2] Li M.-C., Malkin M. Topological horseshoes for perturbations of singular deference equations.
Nonlinearity, 2006, vol. 19, pp. 795�811.

[3] V.N. Belykh, B. Ukrainsky. A Discrete-time Hybrid Lurie Type System with Strange Hyper-
bolic Nonstationary Attractor. in Dynamics and control of hybrid mechanical systems. World
Scienti�c Series on Nonlinear Science, Series B Vol. 14 (2010)

On topological classi�cation and realization of Morse-Smale cascades on the sphere

Grines V.Z., Gurevich E.Ya.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

A Morse-Smale cascade f : Sn → Sn (or a �ow f t) on the sphere Sn is a structurally stable
di�eomorphism (�ow) whose non-wandering set belongs to �nite number of periodic hyperbolic
orbits, including �xed points.

A wide set of Morse-Smale �ows admit combinatorial description of topological equivalence
classes, while similar cascades do not (see, for example, [1] for references). We discuss the di�erence
and de�ne a class of Morse-Smale cascades to which it is possible to borrow the topological invariants
from the �ows.

Describe a combinatorial invariant for a class G of Morse-Smale di�eomorphisms on the sphere
Sn of dimension n ≥ 4 without heteroclinic intersection of invariant manifolds of saddle periodic
points introduced in [2] and called a colored graph.

Let Ωf be a non-wandering set of the di�eomorphism f ∈ G and Ωif = {p ∈ Ωf | dim W u
p = i},

i ∈ {0, 1, n− 1, n}.
For any saddle point σ of the di�eomorphism f ∈ G the closure cl W δ

σ of its invariant manifold
W δ
σ , δ ∈ {s, u} of dimension (n − 1) consists of the union of W δ

σ and exactly one periodic point (a
sink if δ = u and a source otherwise). A union Lf = (

∪
p∈Ω1

f

cl W s
p ) ∪ (

∪
q∈Ωn−1

f

cl W u
q ) cuts the sphere

Sn in k = |Ω1
f ∪ Ωn−1

f |+ 1 connected components (where |P | is a cardinality of the set P ). Denote

these components by D1, . . . , Dk and put Df =
k∪
i∈1

Di.

A colored graph of the di�eomorphism f ∈ G is the graph Γf with the following properties:

1) a set Γ0
f of vertices of the graph Γf is isomorphic to the set Df , a set Γ

1
f of edges is isomorphic

to the set Lf by an isomorphism ξ : Γ0
f ∪ Γ1

f → Df ∪ Lf ;

2) vertices vi, vj are joined by an edge ei,j if and only if the correspondent domains Di =
ξ(vi), Dj = ξ(vj) have the common boundary;
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3) an edge ei,j have a color s (u) if ξ(ei,j) =W s
p (ξ(ei,j) =W u

q ) for some points p, q ∈ Ωf .

One can show that the colored graph Γf of any f ∈ G is a tree.
Endow the graph Γf by an automorphism Pf : Γf → Γf such that ξPf = fξ.

Theorem 1. Di�eomorphisms f, f ′ ∈ G are topologically conjugated if and only if there exists
an isomorphism ζ : Γf → Γf ′ preserving color of edges such that Pf ′ = ζPfζ

−1.

Theorem 2. For any 2-colored tree Γ enriched by an automorphism P there is a di�eomorphism
f ∈ G such that Γf is isomorphic to Γ by means of isomorphism ζ : Γf → Γ preserving color of
edges such that P = ζPfζ

−1.

Research was supported by Russian Science Foundation (project 17-11-01041).
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Three-dimensional Poincare cross-sections in the model
of oscillatory interaction of di�erent-scaled structures in solids

Alexander Herega1, Yury Kryvchenko2

1Research and Production Center, Odessa, 65000, Ukraine
2Odessa National Academy of Food Technologies, Odessa, 65039, Ukraine

aherega@gmail.com

As is well known the properties of solids are the result of the joint in�uence of structures of various
scales. The report presents the model of the oscillatory interaction of di�erent-scaled structures in
solids.

In the model exchange of energy between structural levels is described as evolution of the dynamic
system consisting of subsystems that interact de�ned by laws:

Φ(x, y, z, w) =



xn+1 = xn − kxypx
2
n + kyxqy

2
n + xin

yn+1 = yn + kxypx
2
n − (kyx + kyz)qy

2
n + kzyrz

2
n

zn+1 = zn + kyzqy
2
n − (kzy + kzw)rz

2
n + kwzsw

2
n

wn+1 = wn + kzwrz
2
n − (kwz + kout)sw

2
n

,

where x, y, z and w are dynamic variables characterizing the energy of scale structural levels, and
kij , p, q, r and s are distributing coe�cients, that have a clear interpretation depending on a physical
nature of the system.
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Solution of the system was obtained numerically. Stability of phase trajectories was computed by
methods of Lagrange and Lyapunov; it was shown that the region of existence of stable trajectories
is limited.

It obvious, evolution of this dynamical system is described by various types of attractors in the
four-dimensional phase space. For determined this types in the computer realization of the model,
visualization of attractors is provided. For this, the trajectory of the system in phase space was
dissecting by a three-dimensional analogue of the Poincare cross-sections.

Figure 1: Attractors in three-dimensional Poincare cross-sections for various values of control pa-
rameters. Segments of lines are axes of coordinate.

Trajectories obtained in that cross-sections, as obviously, have dimension on one less then initial
attractors, and can be visualize (Fig.1). It is by these visualizations in the model is determined
character of the evolution of the system for di�erent values of the control parameters.
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Morse theory and rigidity for transversely a�ne foliations

Nozawa Hiraku

Ritsumeikan University

This is a work in progress, joint work with Gilbert Hector (University of Lyon I).
Codimension one taut foliations on 3-manifolds have been studied for many years. Their classi-

�cation on hyperbolic 3-manifolds has a mysterious �nite aspect, but still very few is known. In this
talk, we consider classi�cation of taut foliations on surface bundles with pseudo-Anosov monodromy,
which is a typical example of hyperbolic 3-manifolds.
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On a torus bundleM over S1 with linear Anosov monodromy map f , taut foliations are essentially
classi�ed by Ghys-Sergiescu [GS]: Any foliation without compact leaves on M is isotopic to either
of the stable or unstable foliation of f . On a surface bundle M over S1 whose �ber is an orientable
closed surface Σ of genus > 1, the classi�cation becomes much more complicated. For example,
Cooper-Long-Reid [CLR] produced uncountably many minimal foliations which are close to E and
mutually non-isotopic by some surgery on the bundle foliation. On the other hand, Nakayama
[Na] generalized Ghys-Sergiescu's theorem in the context of transversely a�ne foliations under some
conditions. Here, a transversely orientable codimension one foliation is transversely a�ne if it is
de�ned by a 1-form ω such that dω = η ∧ ω for some closed 1-form η. In Nakayama's result,
(un)stable foliations of linear Anosov maps are replaced with Meigniez's example [Me], so-called
suspension foliation of pseudo-Anosov map.

Our main results are generalizations of Meigniez's example and Nakayama's theorem: Given
f ∈ Diff+(Σ) and σ ∈ H1(Σ) with f∗σ = λσ for some λ (̸= 1) > 0, we construct a foliation Fσ on
the surface bundle with monodromy f by modifying Meigniez's construction with Moser's technique.
These foliations Fσ are transversely a�ne, and share good properties with Meigniez's examples. The
following generalizes Nakayama's theorem.

Theorem 1. Let f ∈ Diff+(Σ) be a pseudo-Anosov map and let Mf be the Σ-bundle whose mon-
odromy is f . Let E be the bundle foliation on Mf . If b1(Mf ) = 1, then any orientable transversely
a�ne foliation without compact leaves whose tangent plane �eld is homotopic to TE is isotopic to
Fσ for some real eigenvector σ ∈ H1(Σ) of f∗.

Since Fσ can be isotoped to a foliation which is almost tangent to E , we have the following
consequence.

Theorem 2. Let f , Mf and E be as in Theorem 1. If b1(Mf ) = 1, then, for any ε > 0, any
orientable transversely a�ne foliation without compact leaves whose tangent plane �eld is homotopic
to TE is ε-coarse isotopic to E in the sense of Gabai [Ga].

The main step of the proof of Theorem 1 is to isotope given foliation F to a foliation transverse to
given 1-dimensional �ow transverse to the surface �bers. This is done by eliminating certain tangent
points of F to E by isotopies, based on a one-parameter family version of the Morse theory and Cerf's
theorem. The argument is related to the argument of Roussarie-Qu�e [QR] and Blank-Laudenbach
[BL] based on Morse theory for foliations without holonomy.
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Cascade of period-doubling bifurcations
in the "generalized" FitzHugh-Nagumo system

Ivanov A.V.

Department of mathematical physics
Saint-Petersburg State University

We study a FitzHugh-Nagumo-like system of three ODEs with one fast variable corresponding
to the membrane potential and two slow gating variables:

εẋ = x− x3/3− y − z

ẏ = a+ x

ż = a+ x− z,

where ε is a small parameter and the parameter a is assumed to be slightly less than one. The
slow manifold of the system is described by the eqution x− x3/3− y − z = 0 and possesses folds at
x = ±1, y + z = ±2/3.

One may observe that the system has a unique equilibrium, which is stable for su�ciently
large a. However, decrease of a leads to the supercritical Andronov-Hopf bifurcation at a value
aH = 1− 1

4ε+O(ε2) (see e.g. [1]) . Immediately after the bifurcation the amplitude of the newborn
stable periodic orbit is small and lies below the threshold of spiking. In contrast, for a ≪ aH the
system exhibits large-scale periodic oscillations: continuous spiking known as "canards".

In [1] the author found numerically that dynamics near the slow surface can e�ectively become
three-dimensional. As a result, the initial periodic state may lose stability already before the canard
transition via a sequence of period-doubling bifurcations. Studying numerically the period-doubling
cascades for small but �xed values of the parameter ε, M. Zaks observed that the cascade follows
the Feigenbaum law with the Feigenbaum constant 4.67 . . ., which is typical for dissipative systems.
On the other hand for smaller values of ε the process switches to the Feigenbaum constant of a
conservative map as, in the limit ε→ 0, two-dimensional Poincar�e map nearly preserves the area.

The reason for such phenomenon lies in the closeness of the equilibrium to a fold of the slow
manifold. Varying a the position of the equilibrium moves and reaches the fold at a = aH .

In this paper we study the system in a vicinity of the pair "equilibrium-fold" and derive the
asymptotic formula for the Poincar�e return map. We calculate the parameter values for the �rst
period-doubling bifurcation and also discuss more general 3d model with a similar bifurcation sce-
nario.
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On the classi�cation of homoclinic attractors of three-dimensional �ows

Karatetskaia E.Yu.1, Kazakov A.O.1, Kozlov A.D.1, Safonov K.A.2

1Laboratory of topological methods in dynamics
National Research University Higher School of Economics

2Institute of Information Technologies, Mathematics and Mechanics
Lobachevsky State University of Nizhny Novgorod

This report covers some issues of classi�cation of strange homoclinic attractors of three-
dimensional dynamical systems with continuous-time (�ows). Strange attractors are called ho-
moclinic if they contain a speci�c saddle equilibrium together with its unstable manifold. The
classi�cation of homoclinic attractors is based on the properties of the equilibrium state belonging
to the attractor. These properties are determined by eigenvalues of the equilibrium. Depending on
the signs of real parts of the eigenvalues, the saddle equilibrium states of three-dimensional �ows
are of only two types: (2,1) � with two-dimensional stable and one-dimensional unstable invariant
manifolds, and (1,2) � with one-dimensional stable and two-dimensional unstable manifolds. If a
saddle equilibrium has a pair of complex-conjugated eigenvalues, then it is called a saddle-focus.
Topologically, the saddle-focus equilibrium topologically is not distinguished from the saddle (with
real eigenvalues). However, concerning the dynamics, the saddle focus is fundamentally di�erent
from the saddle [1]. Another important characteristic of saddle equilibrium states is the sum of the
real parts of the eigenvalues closest to the imaginary axis, but lying on it on opposite sides. De-
pending on the described characteristics, strange homoclinic attractors can be of six di�erent types:
Shilnikov attractor containing a saddle focus (1,2); �gure-eight spiral attractor containing a saddle
focus (2,1) with the Shilnikov homoclinic loop of the saddle focus when the saddle value is positive; a
�gure-eight spiral attractor with a saddle-focus loop (2,1), whose saddle value is negative; attractor
of the Lorenz type containing a saddle (2,1) with a positive saddle value; Lyubimov-Zaks-Rovella
attractor containing a saddle (2,1) with a negative saddle value; and the Shilnikov saddle attractor
containing the saddle equilibrium (1,2).

The idea of classifying homoclinic attractors according to the type of equilibrium state was
proposed in [2]. It was framed as a saddle charts method and applied to the class of three-dimensional
Henon maps in [3]. In this report the classi�cation of homoclinic attractors based on the saddle charts
method is applied to the three-dimensional �ows of the following form:

ẋ = y + g1(x, y, z),

ẏ = z + g2(x, y, z),

ż = Ax+By + Cz + g3(x, y, z),

(1)

where A,B è C � parameters of the system and gi, i = 1, 2, 3 � non-linear functions satisfying to

gi(0, 0, 0) =
∂gi
∂x

(0, 0, 0) =
∂gi
∂y

(0, 0, 0) =
∂gi
∂z

(0, 0, 0) = 0, i = 1, 2, 3.

whose linearization matrix is represented in the Frobenius form, and the eigenvalues are deter-
mined by the coe�cients A,B and C. In the parameters space A,B and C, a saddle chart (extended
bifurcation diagram) is constructed, where 7 regions corresponding to attractors of various types are
distinguished. It is noted that a wide class of three-dimensional �ows can be reduced to the class of
systems under consideration.

The report also discusses problems related to the pseudohyperbolicity of homoclinic attractors
of three-dimensional �ows. According to the theory of Turaev and Shilnikov chaotic attractors are
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called pseudohyperbolic if any its trajectory has a positive Lyapunov exponent, and this property
persists after small perturbations of the system [4]. It is proved that in three-dimensional �ows
only two types of homoclinic attractors can be pseudohyperbolic: Lorenz-like attractors containing
a saddle equilibrium state with a two-dimensional stable manifold whose saddle value is positive; as
well as Shilnikov saddle attractors containing a saddle equilibrium with a two-dimensional unstable
manifold. The remaining attractors inevitably belong to a class of quasiatractors by Afraimovich-
Shilnikov (such attractors either contain stable periodic orbit with narrow absorbing domains or
such orbits appear after arbitrarily small perturbations).

This work was supported by a grant from the Russian Science Foundation 17-11-01041. The
results of the numerical experiments were performed as part of the HSE fundamental research
program in 2019.
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Bifurcations in the singular perturbed second-order system with delay

Kaschenko I. S.

Faculty of Mathematics
P.G. Demidov Yaroslavl State University

Consider second-order delay dynamical system

γ−1ẋ+ x = x(t− T )(a+ d1y + d2y
2),

ẏ = by + cx2.
(1)

Study the dynamics of (1) in the neighborhood of zero equilibrium.
Main assumption is γT is su�ciently large, i.e. 0 < ε = (γT )−1 ≪ 1. Thus, system (1) is singular

perturbed. The critical cases (points of bifurcation) has in�nite dimension. The quasinormal forms,
nonlinear evolutional equations, are constructed in each critical case. Solutions of these equations
determine the behavior and main terms of asymptotics of the solutions of (1).

This work was funded by RFBR according to the research project 18-29-10043.
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Asymptotics of self-oscillations in chains of coupled oscillators

Kaschenko S.A.

Faculty of Mathematics
P. G. Demidov Yaroslavl State University

Consider the local dynamics of system of coupled oscillators. Under condition of su�ciently
large number of oscillators a spatially distributed model is obtained. Critical cases in the problem of
the stability of its solutions have in�nite dimension. Special nonlinear systems of partial di�erential
equations are constructed whose nonlocal dynamics describes the behavior of all solutions of the
original system in a small neighborhood of its equilibrium state.

Routes to spiral chaos and hyperchaos in a three-dimensional Henon map.

Kazakov A.O., Shykhmamedov A.I., Stankevich N.V.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

In this work, we study scenarios of the appearance of chaotic and hyperchaotic attractors in
three-dimensional H�enon map of the form

x̄ = y,

ȳ = z,

z̄ = Bx+ Cy +Az − y2.

where x, y, z are map variables and A,B,C are parameters. Note, that the determinant of the
Jacoby matrix of this map is equal to B. From the papers [1] and [2], it is known that this map
demonstrates discrete Shilnikov attractors. These attractors appear in accordance with the scenario
presented in [3, 1]. The main stage of this scenario is the absorption of the saddle-focus �xed
point with two-dimensional unstable manifold which appears after supercritical Neimark-Sacker
bifurcation. In [4] this scenario was extended to the systems demonstrating secondary Neimark-
Sacker bifurcation with stable periodic orbits emerging inside Arnold's tongues. In accordance with
this scenario, a chaotic attractor absorbs the periodic saddle-focus orbit which appears via secondary
Neimark-Sacker bifurcations and the discrete Shilnikov-like attractor containing this periodic orbit
appears. Also, it was shown in this paper that this scenario can lead to the birth of hyperchaotic
attractors.

In this work, we show that the above scenario leads to the emergence of spiral chaos and hyper-
chaos in the three-dimensional H�enon map under consideration. Various types of discrete Shilnikov-
like attractors containing di�erent period orbits are found. We also discuss that depending on
the measure of saddle-focus periodic orbits belonging to the attractor comparing with the saddles
with one-dimensional unstable manifold the resulting Shilnikov-like attractors may be chaotic or
hyperchaotic.

In the second part of this work, we show that for some values of parameters, e.g. for small
Jacobian B, the map under consideration demonstrates hyperchaotic attractors without saddle-focus
periodic orbit. We propose for this case a new scenario. The key part of this scenario is the cascades of
period-doubling bifurcations with periodic saddle orbits belonging to the H�enon-like chaotic attractor
which, in its turn, appears from the stable �xed point due to the Feigenbaum's cascade followed
by the cascade of heteroclinic bifurcations of band merging. Note, that after the period-doubling
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cascades with the saddle orbits almost all periodic orbits belonging to the attractor are saddles with
two-dimensional unstable manifold and, thus, the created attractor becomes hyperchaotic one.

This work is supported by the RSF grant 19-71-10048.
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Structures of a parabolic problem with spatial variable transformation

Khazova Yu.A.

Department of Di�erential Equations and Geometry
V.I. Vernadsky Crimean Federal University

A mixed boundary value problem for a nonlinear parabolic equation in a circle

vt + v −D△v +Kγ sinwQv = Kγ((cosw(cosQv − 1)− sinw(sinQv −Qv)),

is considered with Neumann conditions on the boundary for r = r1

∂v(r1, φ, t)

∂r
= 0,

periodicity conditions
v(r, φ, t) = v(r, 2π + φ, t),

boundedness conditions at the origin

|v(0, φ, t)| ≤ c <∞

and initial condition
v(r, φ, 0) = v0(r, φ).

Lemma [1]. The linear operator L has eigenfunctions

Xkm(r, φ) = {Jk(λckmr) cos kφ, Jk(λskmr) sin kφ},

which correspond to eigenvalues

λckm = D

(
µkm
r1

)2

+ (−1)kKγ sinω + 1,
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λskm = D

(
µkm
r1

)2

+ (−1)k+1Kγ sinω + 1, k = 0, 1, 2, . . . , m = 1, 2, . . . ,

where Jk(x) � Bessel function, µkm � solutions of the equation

J ′
k(µkm) = 0, k = 0, 1, 2, . . . , m = 1, 2, . . . .

To analyze the structure of the solution, depending on the parameter D, it is necessary to
evaluate the eigenvalues.

Denote by Λ = −Kγ sinw. Choose Λ = Λ(K, γ) < −1.
At D1 = −1−Λ(

λc11
r1

)2 , λ
c
11 can change sign when decreasing D. As a result of bifurcation, a pair of

spatially inhomogeneous stationary solutions branches o� from the zero solution.
Theorem [2]. There is δ0 > 0 such that if 0 < D − D1 < δ0, then the equation has two

asymptotically stable solutions:

v±(r, φ,D) ≈ ±
(
D −D1

c1(D)

)1/2

J1(λ
c
11r) cosφ+

+
1

2!

(
D −D1

c1(D)

)
Λ

2
ctg ω((λc10 − 2λc11)

−1 + (λc12 − 2λc11)
−1 cos 2φ)J2

1 (λ
c
11r)±

± 1

3!

(
D −D1

c1(D)

)3/2

(λc13 − 3λc11)
−1

(
Λ

4
− 3

4
Λ2ctg2 ω(λc12 − 2λc11)

−1

)
·

·J2
1 (λ

c
11r)J3(λ

c
11r) cos 3φ,

where

c1(D) =

[
Λ

8
− 1

4
(Λctg ω)2

(
(λc10 − 2λc11)

−1 +
1

2
(λc12 − 2λc11)

−1

)]
J2
1 (λ

c
11r) < 0.
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Symmetry broken states in a chain of pendulums
Khorkin D.S.1, Bolotov M.I.1, Smirnov L.A.1,2 and Osipov G.V.1
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We consider the rotational dynamics in a chain of coupled pendulums [1], where the wide variety
of in-phase and out-of-phase regimes exists. Many of these states appear due to instability of in-phase
rotational regime [2, 3]. Our theoretical analysis allows to �nd the boundaries of the in-phase regime
instability domain for chains with arbitrary number of pendulums in the case of small dissipation.
The modes responsible for the instability development are matched with arising out-of-phase regimes
in the chain. The analytical results are con�rmed with direct numerical simulations. The work was
supported by RSF grant No. 19-12-00367.
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Superradiant mode transition in a heterolaser
via the formation of a self-consistent population-inversion grating

Kocharovsky Vl.V., Aleshkin V.A., Dubinov A.A.,

Kocharovskaya E.R., Mishin A.V., Kocharovsky V.V.

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

A talk is devoted to an intriguing physical phenomenon observed in our numerical modeling
of a superradiant lasing in a low-Q symmetric cavity [1, 2], namely, a spontaneous breaking of
the mirror symmetry of counter-propagating waves which results in the asymmetric pro�les of the
�eld, polarization and population inversion of an active medium. The phenomenon is owing to the
nonlinear population inversion grating which is generated self-consistently by the inhomogeneous
counter-propagating waves under CW pumping. Such coherent dynamical e�ects take place in the
case of very dense active medium and low-Q cavities when a photon (cavity) lifetime is much shorter
than a polarization (optical dipole) lifetime of an active center.

Here, on the basis of numerical solution to the Maxwell-Bloch equations, we describe in detail the
steady and dynamic spontaneous symmetry breaking of the structure of the �eld, polarization and
population inversion of an active medium with almost homogeneously broadened spectral line placed
into a symmetric combined distributed feedback (DFB) Fabry-Perot cavity. Under the conditions
of this breaking in the steady-state or weakly modulated regimes of superradiant lasing, the spatial
pro�les of the counter-propagating waves become strongly asymmetric and di�er essentially from
the symmetric pro�les of known so-called cold and hot modes, calculated at zero or quasistationary
homogeneous population inversion, respectively.

It is shown that the asymmetric (with respect to the cavity center ζ = 0) superradiant lasing is
typical below or near the non-stationary lasing threshold. The symmetry breaking occurs during the
long transient stage of moving to steady or slow self-modulated lasing and exists even without DFB.
We discuss a range of the laser parameters where the phenomenon is present and suggest possible
designs of the semiconductor heterolasers of this kind.

In general, in any non-stationary superradiance regime, a dynamic spontaneous symmetry break-
ing can take place for the pro�les of mode �elds and the consistent population inversion pro�le
averaged over a long enough time interval containing several characteristic sets of pulses of all lasing
modes. The appearing asymmetry can be metastable and the regions of the maximum inversion of
the medium and the minimum intensity of the mode �eld can displace alternately to one side or
another from the cavity center. Such spontaneous switchings of metastable laser states can cause
temporal changes in the average emission intensity and in the correlation properties of laser pulses,
these averages being considerably di�erent for opposite ends of the laser. We attract attention to
same mathematical problems of the theory of spontaneous symmetry breaking in both cases of the
steady-state and non-stationary superradiant lasing.
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Evolution of the spatial spectra of the quasi-magnetostatic Weibel turbulence
in an anisotropic collisionless plasma and the relayed particle magnetization

Kocharovsky Vl.V.1, Annenkov S.S.2, Borodachev L.V.2,

Kolomiets D.O.2, Kocharovsky V.V.1,3, Nechaev A.A.1
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On the basis of numerical modeling of the nonlinear stage of the Weibel instability in a homoge-
neous nonrelativistic electron-ion plasma with a strong initial temperature anisotropy and compa-
rable initial energies of electrons and ions, the evolution of the spatial spectrum of the developing
quasimagnetostatic turbulence is investigated. Until very recently, analytical and numerical studies
of the dynamics of this instability (see, e.g., [1, 2]) were mainly limited to the analysis of a single
spatial harmonic of magnetic �eld or electric current, the one with the maximum growth rate at the
linear stage. The dynamics of various harmonics of the �eld and current and their interaction at the
nonlinear stage remain essentially unexplored. We started such an analysis in our recent work [3],
where the Weibel instability in nonrelativistic electron-ion bimaxwellian plasma was investigated.
This report discusses peculiarities and di�culties of the analytical description of the considered
evolution of the Weibel turbulence.

The calculations presented in the report were carried out with the DARWIN code, which imple-
ments the particle-in-cell method in a 5-dimensional (2D3V) phase space and is based on the non-
radiative Vlasov � Darwin model for electromagnetic �eld dynamics. Initially, we set the Maxwellian
distributions of particles by each of the velocity components, but with di�erent temperatures par-
allel and orthogonal to the z-axis of Cartesian coordinates. The longitudinal temperature was the
greatest, and the simulation was carried out in the xy-plane.

It is shown that after the growth of the total magnetic �eld RMS value stops, the exponential
growth of the electron current harmonics at a certain stage before their saturation changes to a
power-law one, and that the long-wave harmonics saturate later than the short-wave ones. On the
whole, the dynamics of the spatial spectra of the magnetic �eld is largely determined by the relay
processes of the trapped electrons release from decaying short-wave current �laments and subsequent
trapping into growing longer-wavelength ones. This leads to a universal power law of the decay of
the magnetic �eld (or current) spatial spectrum components that decrease in time with an exponent
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close to 5/2. Meanwhile, the wave number corresponding to the maximum of the magnetic �eld and
current spectrum decreases with time approximately according to the root law. Finally, the RMS
value of the inductive electric �eld decreases as a power-law with an exponent close to 5/3. The
spectral indices of the spatial spectra of the Weibel turbulence are also established.

The question of the universality of the discovered spectral indices and the laws of the temporal
evolution of the Weibel instability in a plasma with various types of anisotropy remains open.

The considered scenario can be realized in the solar (stellar) wind, coronal mass ejections on the
late spectral class stars, or in laboratory conditions, e.g., in laser experiments on the ablation of
solid targets, where anisotropic heating of electrons is possible.

The work is supported by the RFBR grant, project No. 18-29-21029.
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Studying of the spatial distribution of the chlorophyll "a"
in the Bering Sea on the basis of satellite data

Kolbina E.A., Abakumov A.I.

Laboratory of mathematical modeling of biophysical processes
Institute of Automation and Control Processes FEB of RAS

The concentration of chlorophyll "a" is the one of the parameters allowing to estimate a condition
of ecosystems of the ocean. Chlorophyll "a" is the main pigment of cages of phytoplankton providing
photosynthesis process. The amount of photosynthetic primary production which is the speed of
producing organic substance in the course of photosynthesis which de�nes the general overall bio-
productivity of the ocean depends on quantity and intensity of functioning chlorophyll "a".

To observe the phytoplankton (more precisely, "chlorophyll-a") and its spatial distribution are
developed special space sensors, scanners of color of the sea such as the SeaWiFS (Sea-View Wide
Field-of-View Sensor) on the Seastar satellite and also the MERIS spectroradiometers (Medium
Spectrometer with image resolution) on the Envisat and MODIS (moderate resolution spectrometer)
satellites on the Aqua and Terra satellites.

The regularity of collection of data over the entire area of the World Ocean allows to distinguish
features of dynamics of a chlorophyll "a" on various water areas, compare them, to reveal long-term
tendencies of change. The results of satellite monitoring do not contain direct information about
phytoplankton, but give an opportunity to judge his state on the basis of indicators of content of
a chlorophyll in the upper water layer of the ocean. Monitoring of distribution of concentration of
a chlorophyll has important practical value for �shery because phytoplankton is the food base of
zooplankton and �shes.

For a research the region of the Bering Sea limited to coordinates 45◦ -75◦ NL, 160◦ EL-155◦

WL was chosen. The Bering Sea is rich in nutrients for phytoplankton, the is rather biologically
various, certain areas of the sea are abundant of di�erent types of �shes. The open area allowing
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to allowing to analyze the patterns of formation of the lower trophic levels of the marine ecosystem
has been chosen.

From satellite data are used concentration of a chlorophyll, temperature and illumination on a
surface. Data of May 2014 are processed. The size of the spatial cell (points) is 4 x 4 km, the time
interval is 1 day.

The averaging of satellite characteristics on time and space (the surface of the sea) are con-
structed. If averaging over space has a small variability in time, the averaging on time is highly
dynamic depending on the spatial coordinates. The results are compared to similar researches in
the Okhotsk and Japanese seas.

Transition to estimates of a bio-productivity of the Bering Sea by satellite information with
application of mathematical models of dynamics of plankton is supposed.

The reported study was funded by RFBR according to the research project â½� 18-01-00213.

Simple foliated �ows

Kordyukov Yu.A.

Institute of Mathematics
Ufa Federal Research Centre RAS, Russia

Let F be a smooth transversely oriented codimension one foliation on a closed manifold M and
let ϕ = {ϕt : M → M : t ∈ R} be a foliated �ow on M (that is, each ϕt maps leaves to leaves).
Denote by (Σ,H) the holonomy pseudogroup of F . The foliated �ow ϕ induces an H-equivariant
local �ow ϕ̄ on the transversal manifold Σ. A leaf L preserved by ϕ corresponds to a �xed point
p̄ ∈ Σ of ϕ̄. It is called transversely simple if p̄ is a simple �xed point of ϕ̄. In this case, ϕ̄t∗ = eκt on
Tp̄Σ ≡ R for some κ ∈ R\{0}, which depends only on L. If all leaves preserved by ϕ are transversely
simple, then ϕ is called transversely simple. The goal is to describe codimension one foliations on
closed manifolds that admit transversely simple foliated �ows.

Let M0 be the union of leaves preserved by ϕ. The set M0 is ϕ-invariant and closed in M . If ϕ
is transversely simple, then M0 is a �nite union of compact leaves. Moreover, the holonomy group
Hol(L) of any leaf L ⊂M0 consists of germs at 0 of homotheties on R.

Let L be a compact leaf whose holonomy group Hol(L) is described by germs at 0 of homotheties
on R in a foliated chart (U, (x, y)) around any point of L, where x is the transverse coordinate. Then
Hol(L) is also described by germs at 0 of homotheties on R in the foliated chart (U, (u, y)), with
u = x |x|α−1 (0 < α ̸= 1), which is not smooth at U ∩ L. A transverse power change of the
di�erentiable structure of M around L is de�ned by requiring all of these new charts to be smooth.

We claim that F admits a transversely simple foliated �ow if and only if:

1. F is a �ber bundle over S1 with connected �bers.

2. F is a minimal R-Lie foliation.

3. F is an elementary transversely a�ne foliation whose developing map is surjective over R, and
whose global holonomy group is a non-trivial group of homotheties.

4. F is a transversely projective foliation whose developing map is surjective over the real pro-
jective line S1

∞ = R ∪ {∞}, and whose global holonomy group consists of the identity and
hyperbolic elements with a common �xed point set.

5. F is obtained from a foliation as in (3) or (4) using transverse power changes of the di�erentiable
structure of M around the leaves in M0.
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In all these cases, F is almost without holonomy.
This is joint work with J.A. �Alvarez L�opez and E. Leichtnam.

Time-reversal dynamics in ensemble of two excitatory coupled elements

Korotkov A.G., Zaks M.A., Osipov G.V.

Institute of Information Technology, Mathematics and Mechanics
Lobachevsky State University of Nizhny Novgorod

Model. The studied model consists of two elements. Elements are modeled by Adler's equation:

·
ϕ = γ − sinϕ,

where ϕ is phase of element.
The model of ensemble of two excitatory coupled elements is

·
ϕ1 = γ − sinϕ1 + d · I(ϕ2)
·
ϕ2 = γ − sinϕ2 + d · I(ϕ1)

, (1)

where I(ϕ) � the function which de�ne the coupling between elements:

I(ϕ) =
1

1 + ek(cos(δ/2)−cos(ϕ−α−δ/2)) . (2)

Parameters γ, d and k are �xed: γ = 0.7, d = 1, k = 50. So there are two free parameters: α
and δ.

Figure 1: Phase portraits of system (3). Green and red points are stable and unstable equilibrium.
Blue points are saddle. Cyan points are centers. Red curves are unstable separatrices of saddles.
Green curves are stable separatrices of saddles. Cyan curves are closed trajectories.

Time-reversal symmetry in model. Dynamical system
·
x = F (x) (x ∈ Ω) is reversible if it

satis�es condition dR(x)
dt = −F (R(x)) (R : Ω → Ω).
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Case δ = π − 2α. If δ = π − 2α then system (1) becomes
·
ϕ1 = γ − sinϕ1 +

d
1+ek(sinα−sinϕ2)

·
ϕ2 = γ − sinϕ2 +

d
1+ek(sinα−sinϕ1)

. (3)

System (3) is reversible. For system (3) reversing symmetry function is R : (x, y) 7→ (π−y, π−x).
Figure 1 shows all types of dynamics of system (3) when parameter α is varying.

Figure 2: Phase portraits of system (4). Denotation is the same as for �gure 1.

Case δ = 3π − 2α. If δ = 3π − 2α then system (1) becomes
·
ϕ1 = γ − sinϕ1 +

d
1+ek(sinϕ2−sinα)

·
ϕ2 = γ − sinϕ2 +

d
1+ek(sinϕ1−sinα)

. (4)

For system (4) reversing symmetry function is the same as for system (3). Figure 2 shows all
types of dynamics of system (4) when parameter α is varying.

This work was supported by a grant from the Russian Science Foundation 19-12-00367.

On quasi-periodic perturbations of systems with a double limit cycle

Kostromina O.S.

Department of Di�erential Equations, Mathematical and Numerical Analysis
Lobachevsky State University of Nizhny Novgorod

The e�ect of quasi-periodic perturbations on systems close to two-dimensional Hamiltonian ones
is studied in the case where the perturbed autonomous systems have a double limit cycle. The
structure of the resonance zone of the original non-autonomous systems in this case is investigated.
The results obtained are illustrated by the example of a pendulum-type equation.

This work was partially supported by RFBR, No 18-01-00306.
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Hamiltonian generalization of Topaj � Pikovsky lattice

Kruglov V.P., Kuznetsov S.P.

Udmurt State University
Kotelnikov Institute of Radioengineering and Electronics of RAS, Saratov Branch

Steklov Mathematical Institute, Russian Academy of Sciences

We discuss the Hamiltonian model of oscillator lattice with nonlinear local coupling:

İj = − ∂H
∂ϕj

=− 2ε
√
Ij+1Ij (Ij+1 − Ij) cos (ϕj+1 − ϕj)−

− 2ε
√
Ij−1Ij (Ij−1 − Ij) cos (ϕj−1 − ϕj) ,

ϕ̇j =
∂H
∂Ij

=ωj + βIj + ε

{
3
√
Ij+1Ij − Ij+1

√
Ij+1

Ij

}
sin (ϕj+1 − ϕj)+

+ ε

{
3
√
Ij−1Ij − Ij−1

√
Ij−1

Ij

}
sin (ϕj−1 − ϕj) ,

(1)

with free boundary conditions ϕ0 = ϕ1, ϕN+1 = ϕN , I0 = I1, IN+1 = IN . Equations (1) are
generated by Hamiltonian function

H (. . . , Ij , ϕj , . . .) =
N∑
j=1

ωjIj +
1

2
β

N∑
j=1

I2j−

− 2ε
N∑
j=1

√
Ij+1Ij (Ij+1 − Ij) sin (ϕj+1 − ϕj) .

(2)

Equations (1) describe in the classical limit the dynamics of quantum bosonic gas in a tilted
periodic lattice [1]. Ij are intensities of oscillations in potential wells, ϕj are phases of oscillations.
Frequencies are distributed linearly: ωj+1 − ωj=1. Since there are only di�erences of phases on
right-hand-sides of equations (1), we write equations for phase shifts ψj = ϕj+1 − ϕj :

ψ̇j =1 + β (Ij+1 − Ij) + ε

{
3
√
Ij+2Ij+1 − Ij+2

√
Ij+2

Ij+1

}
sinψj+1+

+ ε

{
3
√
Ij−1Ij − Ij−1

√
Ij−1

Ij

}
sinψj−1−

− ε

{
6
√
Ij+1Ij − Ij+2

√
Ij+2

Ij+1
− Ij+1

√
Ij+1

Ij

}
sinψj .

(3)

System (1)-(3) has an invariant manifold Ij = I = const ∀j, on which the dynamics of phases
is described by Topaj � Pikovsky lattice [2, 3] of locally coupled phase oscillators. Furthermore, the
system (1)-(3) has an involution, that reduces to the Topaj � Pikovsky involution on the invariant
manifold:

R : Ij 7→ IN−j+1, ψj 7→ π − ψN−j . (4)

The dynamics on the invariant manifold is not conservative, but that does not contradict to the
Hamiltonicity of the system (1). We show by the numerical simulation, that asymptotic trajectories
on the invariant manifold are saddle ones with sum of Lyapunov exponents equal to zero.
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results).
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Smale � Williams solenoids in autonomous model of coupled
oscillators with "�gure-eight" homoclinic bifurcations

Kruglov V.P., Sataev I.R.
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Kotelnikov Institute of Radioengineering and Electronics of RAS, Saratov Branch

We continue the research of autonomous model [1] with uniformly hyperbolic chaotic attractor
of Smale � Williams type. It is composed of two self-oscillators with saddle equilibrium at the origin.
Each oscillator is governed by equations:

ẋ = u,

u̇ =
(
1− x2

)
x+

[
L−

(
1− x2

)2]
u,

(1)

and demonstrates �gluing� of the limit cycles into the asymptotic trajectories of the saddle equilib-
rium at L ≈ 0.3197. At the same parameter value a ��gure-eight� pair of bi-asymptotic trajectories
of the saddle exists. We investigate two coupled subsystems (1) with coordinates (x, y) and velocities
(u, v). Equations in complex variables z = x+ iy and w = u+ iv are:

ż = w,

ẇ =
(
1− |z|2

)
z +

[
L−

(
1− |z|2

)2]
w + εwM .

(2)

The term εwM describes auxiliary coupling. We discuss examples of system (2) with M = 2 and
M = 3. Let us introduce an angular variable θ as an argument of complex variable z ∝ exp iθ. If a
typical trajectory is close to the saddle equilibrium at z = 0, w = 0 so that the amplitude |z| is small,
then the angular variable θ expands M times due to auxiliary coupling εwM . If one constructs a
proper Poincar�e cross-section of the �ow (2), for example by the surface |z|2 = 1 (trajectories crossing
outwards), which is far from saddle equilibrium, the angular variable θ undergoes an expanding circle
map θn+1 = Mθn + const (mod 2π) after each iteration of Poincar�e return map. If there is strong
contraction of phase space in all other directions in Poincar�e map, the Smale � Williams solenoid
emerges with factor of angular expansion M = 2 or 3.
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We investigate system (2) by means of numerical simulation. We obtain atlases of dynamical
regimes for Poincar�e maps of (2) with expansion factorsM = 2 andM = 3. We qualify parameters at
which Smale � Williams attractors exist with recently developed numerical technique [2]. We check
numerically that average expansion of angular variable is close toM . Namely we accumulate values of
angular variable θn in small intervals

[
2π
N k,

2π
N (k + 1)

]
of the circle [0, 2π) until smooth distribution,

�nd averages ⟨exp iθ⟩k for every interval and calculate the sum
∑N−1

k=0 arg
⟨exp iθ⟩k+1

⟨exp iθ⟩k . If obtained sum

is close to 2πM , while there are no empty intervals and negative values of arg
⟨exp iθ⟩k+1

⟨exp iθ⟩k , we con�rm
that trajectory belongs to Smale � Williams solenoid. We show that the domain of Smale � Williams
attractors is large and continuous on the parameter plane (L, ε) for models (2) withM = 2 or 3. We
spot other regimes by calculation of Lyapunov exponents. We report that birth of Smale � Williams
solenoid is preceded by Feigenbaum transition to non-hyperbolic chaos. The details of the transition
between non-hyperbolic and hyperbolic attractors will be discussed elsewhere.

In addition we check the hyperbolicity of attractor at typical values of parameters by numerical
test of the angles between stable and unstable subspaces with technique developed in [3]. Absence
of zero angles gives us reason to consider the attractor uniformly hyperbolic.

The work was supported by grant of RSF No. 17-12-01008.
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Topological conjugacy of �ows with two limit cycles

Kruglov V.E., Talanova G.N.
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HSE Campus in Nizhny Novgorod

Two �ows are called topologically equivalent if there exists a homeomorphism sending trajectories
of one �ow into trajectories of another one preserving directions of trajectories. Two �ows are
called topologically conjugate if there exists a homeomorphism sending trajectories of one �ow into
trajectories of another one preserving time of moving along the trajectories.

Here we study �ows with two hyperbolic limit cycles without singular points on a torus. A
domain restricted by two limit cycles has only two topological equivalence classes. But in case of
topological conjugacy the situation is a lot more complicated.

In 1978 J. Palis [1] invented continuum topologically non-conjugate systems in a neighbourhood
of a system with a heteroclinic contact (moduli). We tried to �nd some similar moduli for our class
of �ows to describe a class of topological conjugacy. Even existence of a �nite number of moduli
leads to in�nite number of conjugacy classes for a non-singular �ow on a torus. But we found that
even the number of moduli is in�nite. More precisely, the condition of conjugacy is coincidence of
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two special multivalued functions constructing by the �ow up to a composition with a monotonic
function.

The reported study was funded by RFBR according to the research project � 18-31-00022.
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Bursting activity in system of two predator�prey
communities coupled by migration

Kulakov M.P., Kurilova E.V., Frisman E.Ya.

Laboratory of mathematical modeling of population and ecological systems
Institute for Complex Analysis of Regional Problems, FEB RAS

The report is discusses the mechanism of bursting activity for a group of biological predator�
prey communities. The simplest situation is considered, when two non-identical communities live in
isolated patches and are weakly coupled by migration. Coupling is predator migration at constant
rate. The non-identity is the di�erence in the prey growth rates or predator mortalities in each patch.
It should be noted here, the completely identical communities demonstrate only full synchronization
with an arbitrarily small nonzero coupling and any initial conditions. By changing of the variables
and characteristic time, it is easy to show the model of communities that di�er in the prey birth
rate or the predators mortality rates are equivalent. In the latter case, the equations of dynamics
after all simpli�cations and replacements of the parameters have the form:

dx1
dt = x1 (1− ax1)− x1y1

1+hx1
,

dy1
dt = −c1y1 + c1x1y1

1+hx1
+ c1m

(
c1
c2
y2 − y1

)
,

dx2
dt = x2 (1− ax2)− x2y2

1+hx2
,

dy2
dt = −c2y2 + c2x2y2

1+hx2
+ c2m

(
c2
c1
y1 − y2

)
,

(1)

where xi and yi are numbers or density of prey and predator, 1/a is prey habitat carrying capacity,
ci is rate of decline in predator numbers or mortality, h is handling time, mci is predator migration
rate (i = 1, 2). Without coupling (m = 0) the model is as well known Rosenzweig�MacArthur
equations with logistic growth of prey and Hollings predation functional response of II type.

The analysis of local stability for all equilibrium points and limit cycles of system (1) was
performed as well as the qualitative analysis of global bifurcations of periodic solutions. As result
it was shown with increasing di�erence between predator mortality (c2 − c1) there are changes in
the types of dynamics di�ering by a period of oscillation in each patch, the ratio of numbers and
the degree of synchronization. Typically in the �rst patch there is a fast-slow limit cycle (canard)
with a large period and amplitude which modulates the limit cycle with a small period in the second
patch. Here, the coupling, in fact, is unidirectional so that the fast cycle of second community does
not qualitatively a�ect the �rst. As a result there exists a hysteresis loop of bursting connecting
the fast spiking oscillations and slow orbit. Consequently the typically phase trajectory lies on the
surface of a Klein bottle or torus.
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Using a singular perturbation analysis, it was found that the fast cycle emerges and disappears
at certain values of the numbers of predator and prey in the �rst patch (according to the Andronov�
Hopf bifurcation and saddle-node bifurcation). As a result, if the di�erences between mortality
parameters are signi�cant (0 < c1 ≪ c2 < 1), then the dynamics of the system (1) contains segments
of slowly resting dynamic and fast bursts of spikes. Moreover, in the resting part the dynamics of
the second community, as a rule, follow the slow changes in the �rst community, i.e. the dynamics
in di�erent patches are synchronous. But in the fast part there is only phase synchronization
between the fast-slow cycle in �rst patch and bursts in second. However, depending on the system
parameters, spiking manifold can be di�erently lies relative to canard. For example, the start of
bursting activity (divergent fast oscillations) coincides with the minimum numbers of prey in the
�rst territory (x1 ≈ 0). After a rapid increase in the number of prey in the �rst patch, diverging
�uctuations give way to damped in the second patch. Such dynamics correspond to the rhombus
shape of spikes cluster. Another case is interesting, when the bursting activity is possible only after
the full recovery of prey in the �rst patch (x1 > 0). In this case, the spikes cluster has the shape of
a triangle or a truncated rhombus.

This work was performed in the framework of the State targets of the Institute for Complex
Analysis of Regional Problem FEB RAS and partially supported jointly by the Russian Foundation
for Basic Research (18-04-00073 a), and Program of fundamental research of the Russian academy of
Sciences �Priority research in the interests of the integrated development of the Far Eastern Branch
of Russian academy of sciences� (no. 18-5-013).

Attractors of nonlocal Ginzburg-Landau equation

Kulikov A.N., Kulikov D.A.

Department of Di�erential equations
Demidov Yaroslavl State University

The integro-di�erential equation

ut = u− (1 + ic)u
[ 1

2π

2π∫
0

|u|2dx
]
+ (a+ ib)uxx, (1)

where u = u(t, x) is a complex-valued function, a ≥ 0, b, c ∈ R and
a2+ b2 ̸= 0, is usually called the non-local Ginzburg-Landau equation (see, for example, [1,2,3], and
also the references therein). It appeared in the study of ferromagnetism. Usually, equation (1) is
considered together with periodic boundary conditions

u(t, x+ 2π) = u(t, x). (2)

In [3], the dimension of the global attractor was estimated. These results can be substantially
supplemented.

We set ak = 1− ak2 and consider only those k, for which ak > 0, i.e. k2 ≤ m2
0,m0 =

[(1
a

)1/2]
or m0 =

[(1
a

)1/2]
− 1, if

(1
a

)1/2
∈ N.

Theorem 1.The boundary value problem (1), (2) has a homogeneous cycle V0 :

u(t, x) = u0(t) = exp(ict+ iφ0), φ0 ∈ R,

79



as well as m0 invariant varieties Vk (k
2 ≤ m2

0) of dimension 3, which are formed by periodic solutions
of the form

uk(t, x) = ηk exp(iσkt+ ikx+ iφk) + η−k exp(iσkt− ikx+ iφ−k),

where φk, φ−k ∈ R and are arbitrary, σk = −bk2 − cak, ak = 1− ak2 > 0,
k = 1, 2, . . . ,m0, ηk, η−k ≥ 0 and they satisfy the following equality

η2k + η2−k = ak, k = 1, . . . ,m0.

Theorem 2.All solutions of the boundary value problem (1), (2) tend to one of the manifolds
over time V0 or Vk(k = 1, . . . ,m0). Moreover, the one-dimensional manifold V0 is a local attractor,
and the remaining invariant manifolds Vk of dimension 3 are saddle.

In other words, the global attractor of a dynamical system generated by a nonlinear boundary
value problem (1), (2)

M =
m0∪
k=0

Vk.

A special case arises if a = 0. For such case, the statement holds.
Theorem 3.The global attractor M∞ can be selected by the condition

2π∫
0

|u(t, x)|2dx = 2π.

All the solutions of the boundary value problem (1), (2) belonging to M∞, in the general case, are
quasiperiodic functions of the evolution variable t.

The reported study was funded by RFBR according to the research project No 18-01-00672.
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Birth of hyperbolic hyperchaos in a time-delay system with periodic forcing

Kuptsov P.V.1, Kuznetsov S.P.2

1Yuri Gagarin State Technical University of Saratov
2Kotel ′nikov ′s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

We consider a non-autonomous time delay system whose excitation parameter is periodically
modulated so that the system produces a sequence of oscillation pulses. Due to specially tuned
nonlinear mechanism phase of the oscillations is doubled after each modulation period. As a result
a stroboscopic map for this system demonstrates hyperbolic chaos [1, 2]. Varying relation between
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the delay time and the excitation period one can observe a transition to a regime when this map
operates as two weakly coupled chaotic subsystems excited alternately. The overall dynamics in this
case still being hyperbolic becomes hyperchaotic with two positive Lyapunov exponents [3].

We analyze transition to this hyperbolic hyperchaos and reveal the following scenario. After
regular oscillations the hyperchaos appears almost immediately: An area with a single positive
exponent is very narrow. Then, the following hyperchaotic regimes take place sequentially: (a)
intermittency as an alternation of staying near a �xed point and chaotic bursts; (b) competition
between the �xed point and chaotic subset which appears near it; (c) plain hyperchaos without
hyperbolicity after termination visiting neighborhoods of the �xed point; (d) transformation of
chaos to hyperbolic form.

The competition in the regime (b) results in a non-Gaussian distribution of large time �nite time
Lyapunov exponents with power law tails and power law growth of Lyapunov sums. This type of
behavior related with wandering of trajectories near subsets with di�erent numbers of expanding
directions is called unstable dimension variability (UDV). Usually it is observed as a part of scenario
of destruction of chaotic synchronization of two subsystems [4]. In our case we also can talk about
two chaotic subsystems with rather non-trivial interaction. The UDV e�ect is observed for them as
their e�ective coupling strength is decreased.

The transition to hyperbolic hyperchaos is accompanied by vanishing of a non-hyperbolic chaotic
subset embedded into attractor. We detect it using covariant Lyapunov vectors. The hyperbolic
hyperchaos is found to be of two types. The di�erence is due to the presence or absence of a low
dimensional embedded hyperbolic chaotic subset also detected with the help of covariant Lyapunov
vectors. When the subset exists it is visited by trajectories and as a result the attractor has more
complicated structure with higher Kaplan-Yorke dimension. After its vanish the system operates
merely as two weakly coupled identical hyperbolic chaotic subsystems.
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Theory of hidden oscillations and stability of control systems

Kuznetsov N.V.1, Alexeeva T.A.2, Mokaev T.N.1

1Saint-Petersburg State University
2National Research University Higher School of Economics

The development of the theory of absolute stability, the theory of bifurcations, the theory of
chaos, and new computing technologies made it possible to take a fresh look at a number of well-
known theoretical and practical problems in the analysis of multidimensional control systems, which
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led to the emergence of the theory of hidden oscillations [1, 2] which represents the genesis of the
modern era of Andronov's theory of oscillations.

The theory of hidden oscillation is based on a new classi�cation of attractors as self-excited or
hidden [3]. While trivial attractors (stable equilibrium points) can be easily found analytically or
numerically, the search of periodic and chaotic attractors can turn out to be a challenging problem
(see, e.g. famous 16th Hilbert problem on the number of coexisting periodic attractors in two-
dimensional polynomial systems, which was formulated in 1900 and is still unsolved). Self-excited
attractors, even coexisting in the case of multistability, can be revealed numerically by the integration
of trajectories, started in small neighborhoods of unstable equilibria, while hidden attractors have
the basins of attraction, which are not connected with equilibria and are �hidden somewhere� in the
phase space. Thus, the search and visualization of hidden attractors in the phase space require the
development of special analytical and numerical methods.

The suggested classi�cation of attractors as being self-exited or hidden not only demonstrated
di�culties of fundamental problems and applied systems analysis, but also triggered the discovery
of new hidden attractors in well-known engineering and physical models [4]. For the engineering
dynamical models the importance of identifying hidden attractors is related with the classical prob-
lems of determining the exact boundaries of global stability and identifying classes of models for
which the necessary and su�cient conditions for global stability coincide.

This lecture is devoted to well-known theoretical and engineering problems in which hidden
oscillations (their absence or presence and location) play an important role.
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Chaos with positive and zero Lyapunov exponents
in a three-dimensional map: discrete Lorenz-84 system

Kuznetsov A.P., Popova E.S., Stankevich N.V.

Laboratory of Theoretical Nonlinear Dynamics
Kotel'nikov's Institute of Radio-Engineering and Electronics of RAS

Chaotic behavior is one of the fundamental properties of nonlinear maps [1-3]. Chaos can be
most easily and reliably diagnosed using the largest Lyapunov exponent, which will be positive for
the chaotic regime. Chaotic dynamics can occur in di�eomorphisms of dimension two or higher, or
even in one-dimensional endomorphisms. For maps, the absence of a zero exponent in the spectrum
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of Lyapunov exponents is characteristic, since they are discrete. A zero exponent in the spectrum
will indicate the possibility of embedding such a map in the �ow.

In the frame of this work, the possibility of the appearance of chaotic attractors will be shown,
the spectrum of Lyapunov exponents of which contains one positive, one close to zero, and one
negative exponents. As objects of study, three-dimensional discrete oscillator will be used: a discrete
Lorentz-84 oscillator [4]. The paper will present charts of Lyapunov exponents, on which areas with
chaotic dynamics with zero Lyapunov exponent are localized, and characteristic phase portraits are
shown. A mechanism of occurrence of chaos with a close to zero Lyapunov exponent via cascade of
period-doubling bifurcations of an invariant curve will be discussed.

The work was supported by the Russian Foundation for Basic Research, project 18-32-00285.
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Homoclinic orbits for conservative surface di�eomorphisms

Le Calvez P.

Institut de Math�ematiques de Jussieu-Paris Rive Gauche
Sorbonne Universit�e

Let S be a closed surface furnished with an area form ω. For 1 ≤ r ≤ ∞, denote Diffrω(S) the
set of Cr di�eomorphisms of S preserving ω, endowed with the Cr-topology. In a join work with
Mart��n Sambarino (Universidad de la Rep�ublica, Montevideo) we prove that there exists a residual
set R ⊂ Diffrω(S) such that if f ∈ R, there exist hyperbolic periodic points, and every such point
has a transverse homoclinic intersection.

Bifurcations in integrable Hamiltonian systems

Lerman L.M.

Lobachevsky State University of Nizhny Novgorod

One of contemporary problems in the theory of integrable Hamiltonian systems (IHS) is to
classify Liouville �brations generated by low dimensional integrable systems, i.e. in 2, 3, and 4
degrees of freedom. This includes semi-local description of the Liouville �brations for nondegenerate
singularities (rank 0), semi-local nondegenerate singularities of rank 1, 2, and 3 [1]. But such
classi�cation unavoidably requires studying bifurcations [4, 5]. This can be seen in many integrable
systems depending on parameters, for instance, in integrable systems of mechanics (see [2, 3]).

Bifurcations in IHS are related with the fact that in such systems for the related Poisson action all
its singular orbits (of dimension lesser than the half of the manifold dimension) are met in families.
For instance, periodic orbits being 1-dimensional orbits of the induced Poisson action belong to
a 1-parameter families, 2-dimensional Lagrangian tori belong to 2-parameter families, etc. This
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implies the following phenomenon: if one moves along the family, an orbit being more degenerate
(in transverse direction) than neighboring orbits can be met and hence one may expect branching
the family. Also bifurcations are met at the study of parametrized families of integrable systems,
then parameters of the family play the similar role. It is important to stress that common tool to
study integrable systems uses some assumptions on the linearized system on the related Poisson
orbits (like to be a Cartan algebra for the related set of commuting integrals, etc). Such properties
are usually violated at the bifurcation and one needs to use another tool to study the related orbit
structure.

In the talk I intend to discuss these themes for 3 degree of freedom integrable Hamiltonian
systems. In this case (if no outer parameter exist) the related integrable system can contain 1-
parameter families of periodic orbits and 2-parameter families of Lagrangian 2-tori. The reduction
procedure allows one to reduce locally near a point on the degenerate orbit to studying an integrable
family of IHS of lesser dimension depending on related number of parameters. We investigate such
bifurcations and after that globalize this study to get a semi-local description.

The author thanks RFBR for the support under the grants 18-29-00081 and 18-01-00306.
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E�ects of memristor-based coupling in the ensemble of
FitzHugh-Nagumo elements

Levanova T.A., Kazakov A.O., Korotkov A.G.

Lobachevsky State University of Nizhny Novgorod
National Research University Higher School of Economics

The aim of our work is to study the impact of electrical and memristor-based couplings (con-
nections through a common �eld) on the dynamics of a minimal ensemble of neuron-like systems
with chemical (synaptic) excitatory couplings. Previously, the authors has proposed in [1] a new
method for modelling of chemical synaptic couplings using a rectangular function that describes
both the strength of the coupling and the start time and the duration of its impact.This model is
quite simple from a computational point of view and allows to organize a phenomenological mod-
elling the actions of chemical synapses that is in a good agreement with the biological principles
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of their functioning [2]. Described model was tested in the studies [3, 1], in which an ensemble of
FitzHugh-Nagumo coupled systems was studied in the case of chemical (synaptic) excitatory con-
nections alone. Depending on the relations between coupling parameters various coexisting regimes
were observed: regular spiking in-phase and anti-phase regimes, regimes of sequential activity with
di�erent sequences of activations, as well as chaotic 'anti-phase' regimes.

In order to study and describe the e�ects arising due to taking into account electrical and
memristor-based couplings to the ensemble of neurons with chemical synaptic couplings alone, we
need to build a correct mathematical model. This model should be both biologically relevant and
not very complicated. In this section we introduce such a model. This model can be considered as
an extension of the model proposed in [1], which describes interaction of two identical FitzHugh-
Nagumo neurons:

ϵ
·
x1 = x1 − x1

3/3− y1 + I(ϕ2),
·
y1 = x1 − a,

ϵ
·
x2 = x2 − x2

3/3− y2 + I(ϕ1),
·
y2 = x2 − a.

(1)

Here the variables xi and yi (i = 1, 2) are one-dimensional variables: xi describes the dynamics
of membrane potential of i-th element, and yi, the so-called recovery variable, sets a slow negative
feedback for i-th element; also ϵ is a small parameter, 0 < ϵ << 1. In further studies we will
assume that each of coupled elements is initially (before we set all couplings) in an excitable regime
(a = −1.01). We also �x ϵ = 0.01.

The chemical synaptic couplings are given by the following formula

I(ϕ) =
g

1 + ek(cos(δ/2)−cos(ϕ−α−δ/2)) , (2)

where ϕ = arctan y
x is measured in degrees, 0 ≤ ϕ < 360◦, the parameter g describes the strength

of chemical synaptic couplings between elements. For suitable su�ciently large values of k, the
coupling function I(ϕ) is a smooth function that approximates very well the rectangular wave-
pulses. In further studies we will take the following values of chemical coupling parameters: k = 50,
g = 0.1, δ = 50◦.

The extended model, in addition to the described above synaptic coupling, takes into account
electrical and memristor-based couplings [4]. In this case neurons can exchange signals by setting
di�erent electromagnetic �eld and, thus, additional couplings through magnetic �eld arise here
[5, 6]. In the framework of described approach we will use a �ux-controlled memristor [7] with the
memductance

ρ(ϕ) =
dq(ϕ)

dϕ
= k1 + k2ϕ

2, (3)

depending on parameters k1 and k2 to simulate such type of coupling. In the case of k2 = 0 this
coupling can be viewed as electrical one, while in the case of k2 ̸= 0 it is the typical memristor-based
coupling.

Finally, the model of two FitzHugh-Nagumo elements interacting via chemical, electrical or
memristor-based couplings takes the following form

ϵ
·
x1 = x1 − x1

3/3− y1 + I(ϕ2) + ρ(z) · (x2 − x1),
·
y1 = x1 − a,

ϵ
·
x2 = x2 − x2

3/3− y2 + I(ϕ1) + ρ(z) · (x1 − x2),
·
y2 = x2 − a,
·
z = x1 − x2.

(4)
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It is important to note, that when k2 = 0 term ρ(z)(x2 − x1) could be rewritten in the form
k1 · (x2 − x1) that corresponds to the most common way of description of electrical couplings.

In this study we propose an extended and more precise model of an ensemble of coupled neurons
and examine how the additional couplings (both electrical and via the common �eld) allow us to
more e�ectively manage the dynamics of the ensemble. To con�rm this, we carry out one-parameter
bifurcation analysis of the model in order to reveal the nature of the e�ects of additional couplings on
previously detected regimes of activity. Using this approach we study how the regimes of in-phase,
anti-phase and sequential activity can transform into other regimes of neuron-like activity in the
presence of additional couplings. We also show that the presence of electrical and/or memristor-
based coupling can lead to the emergence of extreme events related to the appearance of the spiral
attractors containing a saddle-focus equilibrium with its homoclinic orbit. In this case interspike
intervals can become arbitrarily large when orbits (corresponding to this regime) pass near the
saddle-focus.

The authors also thank RFBR grants 19-01-00607, A. Kazakov thanks Basic Research Program
at NRU HSE in 2019 for support of scienti�c researches.

References

[1] A.G. Korotkov, A.O. Kazakov, et al. Commun. Nonlin. Sci. Num. Simulat., volume 71, 38-49,
2019.

[2] A. Destexhe, Z.F. Mainen, T.J. Sejnowski. Neural computation, volume 6(1), 14-18, 1994.

[3] A.G. Korotkov, A.O. Kazakov, et al. IFAC-PapersOnLine, volume 51(33), 241-245, 2018.

[4] J.Ma, J.Tang. Nonlinear Dyn, volume 89, 1569-1578, 2017.

[5] Lv. M. Wang, et al. Nonlinear Dyn. 85, 1479-1490 (2016).

[6] J. Ma, L. Mi, et al. Applied Mathematics and Computation, volume 307, 321-328, 2017.

[7] L.O. Chua. IEEE Trans. Circuit Theory, volume 18, 507-519, 1971.

About the Bifurcations of the Logistic Equation with Di�usion and
Non-linear Multiplier of Delay

Loginov D.O.

Department of Mathematical Modeling
Yaroslavl State University

We consider bifurcations in the problem

∂u

∂t
= d

∂2u

∂x2
+ ru(t, x)(1− a(x)u(t− 1, x)) (1)

with boundare conditions
∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=1

= 0. (2)

For consideration, the function a(x) is chosen

a(x) = Cx−α, 0 < α < 1, C > 0. (3)
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The problem (1), (2) under the condition (3) has a clear biological meaning and models the dy-
namics of the development of a population of animals living in mountainous areas. For convenience,
the function a(x) is normalized so that ∫ 1

0
a(x)dx = 1 (4)

and the parameter C was chosen
C = 1− α. (5)

In the problem (1), (2) for r > 4.05265, a stable cycle is born. At the left border of the habitat, a
small change in the number of individuals is observed, whereas, when approaching the right border,
these indicators increase markedly. It is shown that for x→ 0 the solution is u(t, x) → 0. A decrease
in the degree of in the term with delay increases the amplitude of the oscillations.

The research was carried out with the �nancial support of the Russian Foundation for Basic
Research in the framework of the research project No. 18-29-10043.
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On the classes of stable isotopic connectivity of polar cascades on a torus.

Loginova A.S., Nozdrinova E.V.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

The problem of the existence of an arc with no more than a countable (�nite) number of bifur-
cations connecting structurally stable systems (Morse-Smale systems) on manifolds is included in
the list of �fty Palis-Pugh problems [6] under number 33. The report will present a solution this
problem for polar gradient-like di�eomorphisms of a torus.

In 1976, S. Newhouse, J. Palis, F. Takens [3] introduced the concept of a stable arc connecting
two structurally stable systems on a manifold. Such an arc does not change its quality properties
with little movement. In the same year, S. Newhouse and M. Peixoto [4] proved the existence of a
simple arc (containing only elementary bifurcations) between any two Morse-Smale �ows. From the
result of the work of J. Fleitas [1] it follows that a simple arc constructed by Newhouse and Peixoto
can always be replaced by a stable one. For Morse-Smale di�eomorphisms given on manifolds
of any dimension, examples of systems that cannot be connected by a stable arc are known. In
this connection, the question naturally arises of �nding an invariant that uniquely determines the
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equivalence class of the Morse-Smale di�eomorphism with respect to the connection relation by a
stable arc (is a component of stable connection).

Consider the class G of polar gradient-like di�eomorphisms on a torus with a �xed nonwandering
set. The di�eomorphisms f0, f1 ∈ G are smoothly isotopic to the identity map of the 2-sphere and,
therefore, can be connected by some arc {ft : S2 → S2, t ∈ [0, 1]} . However, stability of such an
arc with a �nite number of bifurcation values 0 < b1 < · · · < bk < 1 is characterized by the fact
that all of its points are structurally stable di�eomorphisms, with the exception of a �nite number
of bifurcation points, which typically pass through saddle-node bifurcations or �ip.

In this report, a stable arc will be constructed connecting any two cascades from the class in
question. Note that it was shown in [5] that polar cascades on a two-dimensional sphere are always
connected by an arc without bifurcations. For a two-dimensional torus, the situation is di�erent
due to the fact that the closures of the invariant manifolds of saddle points of the polar cascade
are circles belonging to any previously de�ned homotopy class. It follows directly from this that
in the general case there is no arc without bifurcations between the systems under consideration.
Nevertheless, the authors of this paper established the following result.

Theorem 1. Theorem Any di�eomorphisms f0, f1 ∈ G belong to the same class of stable isotopy
connection. Moreover, there exists a stable arc connecting them, all the bifurcation points of which
are saddle-nodes.

Acknowledgement. The authors are supported by TMD Laboratory, NRU HSE, RF government
grant. The work was supported by the Foundation for the Advancement of Theoretical Physics and
Mathematics "BASIS".
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The Depth of the Centre for Continuous Maps on Dendrites

Makhrova E.N.

Department of Di�erential Equations, Mathematical and Numerical Analysis
N.I. Lobachevsky State University of Nizhniy Novgorod

By continuum we mean a compact connected metric space. Dendrite is a locally connected
continuum without subsets homeomorphic to the circle. Dendrite with a �nite set of end points is
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called a �nite tree. A graph is a continuum if it can be written as the �nite union of arcs such that
every two of them meet at their end points.

The depth of the centre for continuous maps on one-dimensional continua is studied in [1] � [8].
The depth of the centre of a continuous map on a closed interval and the circle is at most 2 (see,
e.g., [1], [2]). In [6] J. Mai, T. Sun proved that the depth of the centre of a continuous map on a
�nite tree and a graph is at most 2. In [7] H. Kato showed that for any countable ordinal number
λ there are a dendrite X and a continuous map f : X → X such that the depth of the centre of f
is λ. In [8] T. Sun and H. Xi proved that the depth of a centre for a continuous map f : X → X
on dendrite X with �nite branch points is at most 3. Moreover they constructed a dendrite X with
�nite branch points and a continuous map f : X → X such that the depth of the centre of f is 3.

Let X be a dendrite, f : X → X be a continuous map.
Denote by E(0)(X) the set of end points of a dendrite X. For any ordinal number λ ≥ 1 we

de�ne E(λ)(X) as follows:
if λ = α+ 1, then we denote by E(λ)(X) the set of limit points of the set E(α)(X);
if λ is a limit ordinal number, then we set E(λ)(X) =

∩
α<λ

E(α)(X).

There is a countable ordinal number γ such that E(γ)(X) = E(γ+1)(X). The minimal such γ is
called the rank of a dendrite X.

In the report the relationship between the depth of the centre of a continuous map on a dendrite
and a rank of a dendrite is studied.
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Deformations of functions on surfaces

Maksymenko S.

Topology Laboratory of Algebra and Topology Department
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Let M be a compact surface, f ∈ C∞MR be a Morse function and Γf its Kronrod-Reeb graph.
Denote by O(f) = {f ◦ h | h ∈ D(M)} the orbit of f with respect to the natural right action of the
group of di�eomorphisms D(M) on C∞MR, and by S(f) = {h ∈ D(M) | f ◦ h = f} the stabilizer
of this function.

S. Maksymenko [1], proved that

• if f has at least on saddle critical point, then the connected components of S(f) are con-
tractible;

• otherwise, every path component of S(f) is homotopy equivalent to the circle.

In that paper is was also shown that for generic Morse function f connected components of its
orbit O(f) is homotopy equivalent to

• (S1)k × SO(3) for some k if M is either a 2-sphere or a projective plane;

• and to (S1)k for some k in all other cases;

Further E. Kudryavtseva [2] extended that result proving that for arbitrary Morse function f
there exists a free action of a certain �nite group G on the torus (S1)k such that the connected
components of orbits O(f) are homotopy equivalent to the spaces of the form (S1)k/G × SO(3) if
M = S2 or RP 2 and (S1)k/G in all other cases.

The aim of the talk is to describe recent progress in the computations of homotopy types of the
fundamental group π1O(f) and the groups G.
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Generalization of Milnor-Thurston's theorem on continuity
of topological entropy to discontinuous maps

Malkin M.I., Safonov K.A

Lobachevsky State University of Nizhny Novgorod
malkin@unn.ru, safonov.klim@yandex.ru

The problem on continuity and monotonicity of topological entropy for certain families of chaotic
dynamical systems is still important and attracting because this quantity is responsible for complex-
ity of the limit behavior of orbits. In this talk, we consider this problem for the class of piecewise
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monotone, piecewise smooth maps on the interval endowed with C1-topology. It is well-known
that the topological entropy is lower semi-continuous on the space of piecewise monotone maps
with C0-topology. However, there are many examples of dynamical systems for which the jumps
of topological entropy take place under arbitrarily small perturbations of the initial system (which
lead to instant complication of the orbit behavior). Hence one cannot expect topological entropy
to be a continuous function without any additional assumptions. For instance, as shown in Milnor
and Thurston' paper [1], the topological entropy depends continuously on the map in the class of
smooth piecewise monotone maps with C1-topology. In [2], M. Malkin proved that in the class of
discontinuous Lorenz maps, the topological entropy also has no jumps under the assumption that
the set of the preimages of the discontinuity point is dense (or, alternatively, if the initial map has
positive entropy).

Our aim is to generalize Milnor-Thurston's theorem to the class of piecewise-monotone maps
with �nitely many points of discontinuity. We show that for piecewise monotone piecewise smooth
maps f , the topological entropy htop(f) is continuous as a function of f under the next (natural)
assumption. Namely, the following holds:

Theorem. In the space of piecewise monotone, piecewise C1-smooth maps with C1-topology and
with zero one-sided derivatives at the discontinuity points ci, i.e., with

lim
x→ci+0

f ′(x) = lim
x→ci−0

f ′(x) = 0,

the topological entropy depends continuously on f .
We also give counterexamples in the cases when the assumption of the above theorem is vio-

lated (along with providing exact estimates of the jumps of topological entropy) and discuss the
relationship with one-dimensional and high-dimensional perturbations.

A family of di�erence equations Φλ(yn, yn+1, . . . , yn+m) = 0, n ∈ Z, of order m with parameters
λ (multidimensional, in general) is considered near nonperturbed value λ0 at which the function Φ
is in two variables only :

Φλ0(x0, . . . , xm) = ξ(xN , xN+L),

where 0 ≤ N,N + L ≤ m. It is also assumed that the implicit function induced by the equation
ξ(x, y) = 0 has a piecewise monotone, piecewise smooth branch y = φ(x) with positive topological
entropy: htop(φ) > 0. Under above assumptions it was proved in [3] that for perturbed di�erence
equations with parameters λ near λ0, there is a closed (in the product topology) shift-invariant set
of solutions such that the shift map restricted to this set has positive topological entropy which
approximates the value htop(φ)/|L|.

Now in the talk we show that if the branch φ is a Lorenz map (nonsymmetric, in general) then it
has at most two ergodic measures of maximal entropy htop(φ), and for perturbed di�erence equations
these measures can be continued in order to construct invariant measures with positive entropy
(su�ciently close to htop(φ)/|L|)) when restricted to correspondent invariant sets of solutions.
The work was partially supported by RFBR, grant 18-29-10081
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Fermi-like acceleration growth in nonholonomic systems

Mamaev1 I.S., Bizyaev2 I.A.

1M.T. Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, Izhevsk, 426069 Russia
2Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

The equations of motion in the Suslov problem [1] with two rotors, which govern the evolution
of the angular velocity of a rigid body are represented as

u̇ = −vu−K(t)v − Λ̇(t), v̇ = u2 +K(t)u, (1)

where K(t) and Λ(t) are periodic functions with the same period T , which de�ne the angular
velocities of the rotors.

Of particular interest is the question of whether the reduced system has trajectories unbounded
on the plane (v, u) (i.e., trajectories which leave any bounded region on the plane). In this case the
angular velocity of the carrying body and hence the kinetic energy must increase inde�nitely (in
absolute values) with time.

The case K(t) = 0. Then the reduced system coincides with the reduced system describing
another nonholonomic system: a Chaplygin sleigh with gyrostatic momentum. For this system the
following theorem holds [2]:

Theorem 1. Let Λ(t) be a periodic function. Let us calculate the following average value:

⟨Λ̇2⟩ = 1

T

T∫
0

Λ̇2(t)dt.

If at the initial time v > 0, then the function v(t) increases inde�nitely and u(t) tends to zero:

v(t) = Ct
1
3 + o

(
t
1
3
)
, u(t) = −CΛ̇(t)t−

1
3 + o

(
t−

1
3
)
, C =

(
3⟨Λ̇⟩2

) 1
3 . (2)

If K(t) ̸= 0, then for the reduced system the following theorem holds:

Theorem 2. If the average

⟨G⟩ = 2

T

T∫
0

K(t)Λ̇(t)dt > 0, (3)

then the reduced system has trajectories unbounded in v, which have the following asymptotics:

v(t) = Ct
1
2 + o(t

1
2 ), u(t) = −K(t) + o(t−

1
2 ), C =

√
⟨G⟩. (4)

If ⟨G⟩ < 0, then there are no unbounded trajectories. The case ⟨G⟩ = 0 requires a separate analysis.

Numerical experiments for the one-parameter family of functions:

Λ(t) = α cos t− 1

2
sin t, K(t) = sin t, α = const

show that, depending on α, the reduced system exhibits the following qualitatively di�erent dynam-
ical regimes.

� As t→ +∞, all trajectories tend to one or several periodic solutions of the system.
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� Chaotic oscillations: the system exhibits a strange attractor.

� An intermediate situation: noncompact and bounded chaotic trajectories are observed.

� Speedup: except for the unstable �xed points of the map, all trajectories are noncompact, and
v → +∞ as t → +∞. Numerical experiments show that their asymptotics is described by
relations.

The work of I.S. Mamaev and I.A. Bizyaev was carried out within the framework of the state
assignment of the Ministry of Education and Science of Russia (1.2405.2017/4.6 and 1.2404.2017/4.6
respectively).
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The Generalized Integral Minkowski Inequality
and Lp -norms of Some Special Functions

Maruseev I.A., Rassadin A.E.

Laboratory of in�nite-dimensional analysis and mathematical physics
Lomonosov Moscow State University

In this report we prove two theorems concerning Lp -norms of some functions f(x):

∥f(x)∥Lp([A,B]) ≡
[∫ B

A
|f(x)|p dx

] 1
p

, p > 1 ,

namely,

Theorem 1. Let I0(z) is the modi�ed Bessel function of the �rst kind and zero order [1] then
the following inequality is true:

∥I0(cosx)∥Lp([0,2π]) ≤
∫ 2π

0
I

1
p

0 (p cosx) dx .

Theorem 2. Let β > α > 0 and

M(α, β, x) =
1

B(α, β − α)

∫ 1

0
exyyα−1(1− y)β−α−1 dy

is a con�uent hypergeometric function [1] where

B(ξ, η) =

∫ 1

0
x ξ−1(1− x) η−1 dx
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is the beta function [1] then the following inequality is true:

∥M(α, β, x)∥Lp([−1,1]) ≤
∫ 1

0

xα−1(1− x)β−α−1

B(α, β − α)

(
2
sinh p x

p x

) 1
p

dx

The corner stone for proof of these theorems is the generalized integral Minkowski inequality for
arbitrary continuous function f(x, y) [2]:{∫ b

a

[∫ d

c
|f(x, y)| dy

]p
dx

} 1
p

≤
∫ d

c

[∫ b

a
|f(x, y)|p dx

] 1
p

dy .
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On 2-dimensional expanding attractors of A-�ows on 3-manifolds

Medvedev V.S., Zhuzhoma E.V.
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National Research University Higher School of Economics

We consider closed 3-manifolds supporting A-�ows with 2-dimensional expanding attractors. The
natural question is what closed 3-manifolds admits A-�ows with 2-dimensional expanding attractors.
The main results are the following statements.

Theorem 1. Given any closed 3-manifold M3, there is an A-�ow f t on M3 such that the non-
wandering set NW (f t) consists of a non-orientable two-dimensional expanding attractor and trivial
basic sets.

Theorem 2. There is a nonsingular A-�ow f t on a 3-sphere S3 such that the non-wandering set
NW (f t) contains an orientable two-dimensional expanding attractor.

The study was implemented in the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE) in 2019.

Concentration of Haar measure and estimate
of medians of matrix elements of real linear irreducible

representations of classical compact Lie groups

Meshcheryakov M.V.

National Reseach Mordovia State University
mesh@math.mrsu.ru

The main question addressed in this report is: �what kind real numbers appear as the median of
matrix elements representations of classical matrix compact Lie groups?�
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First of all recall important P. Levy result on concentration of the invariant measure on the
Euclidean sphere Sn−1 [1, 2].
Theorem (P. Levy). Let f : Sn−1 → R be Lipschitz function with Lipschitz constant L and let
X be a uniform measure on Sn−1. Then for mf denoting the median of function f with respect to
measure on Sn−1,

|Ef(X)−mf | ≤ L
√
π/(n− 2)

and
P [|f(X)− Ef(X)| > Lt] ≤ exp(π − nt2/4).

That is, a Lipschitz function on the sphere Sn−1 essentially constant.
Above Ef(X) is the mean of random variable f(X) and we say that

real number mf is a median of function f if P ({f ≤ mf}) ≥ 1/2 and
P ({f ≥ mf}) ≥ 1/2. It is clear that the set of median of f is a closed and bounded inter-
val on real line R.

The Levy mean lm(f, µ) of f with respect to measure µ is de�ned to be lm(f, µ) = (m+m)/2,
where m is the minimum of medians of f and m the maximum of medians of f .

Our goal is to obtain the estimate of medians probability distribution of matrix elements of the
real irreducible representations of the classical compact Lie groups G = SO(n), SU(n) and Sp(n)
under probabilistic Haar measure on G. More precisely, let X be distributed according to Haar
measure on G and let A be �xed n× n matrix over real �eld R, where n = dim ρ. Assume also that
W = Tr(Aρ(X)) be matrix element of ρ considered as a random variable on G.

Our main result is
Theorem. Medians of the matrix elements W = Tr(Aρ(X)) of real irreducible representation ρ
classical compact Lie group G with respect probability Haar measure satisfy following inequality:

|mf | ≤
√
2Tr(AA∗)/

√
dim ρ.

Here an A is linear operator on representation space and A∗ is its conjugate operator.
Proof of theorem based on the orthogonality relations for matrix elements representations and

the Chebyshev inequality [3].
From the geometric point of view it is impotent to �nd more structured subsets on which functions

are concentrated. Some preliminary results of such kind see in [4, 5].
Acknowledgments. The research was supported by the grant RFBR and the Government

Republic of Mordovia in framework of scienti�c project �18-41-130004.
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Self-reliance of attractors

Minkov S.S.

Brook Institute of Electronic Control Machines

It is known that there is the locally residual set of C3 di�eomorphisms with maximal attractors
of positive Lebesgue measure [1]. We can improve this result without understanding the proof. So
called self-reliance of attractors allows us to conclude that there is an open set of C1-systems with
thick attractors.

The idea of self-reliance is basically about standard topological tricks with Gδ sets, and will be
clear after few examples.

This technique also can be used for the research of Milnor attractors of C1-Anosov di�eomor-
phisms [2], and to establish connection between unstable Milnor attractors and so-called Takens
Last Problem, introduced in [3].
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In�nitesimal symmetries of special multi-�ags

Mormul P.

University of Warsaw, Poland

Special m-�ags, m ≥ 2, constitute a natural follow-up to Goursat �ags. The latter compactify
(in certain precise sense) the contact Cartan distributions on the jet spaces Jr(1, 1), while the former
do the same with respect to the jet spaces Jr(1,m).

Sequences of Cartan prolongations of rank-(m+1) distributions are the key players in producing
(only locally) virtually all rank-(m+ 1) distributions generating special m-�ags. Immediately there
emerges an immense tree of singularities of positive codimensions, all of them adjoining the unique
open dense Cartan-like strata.

The local classi�cation problem is well advanced for the Goursat �ags, most notably after the
work [2]. However, it is much less advanced for special multi-�ags. The complete classi�cation of
them was given in [4]: in length r = 3 for all m ≥ 2, and in length 4 for m = 2 (the number of
equivalence classes 34). After the year 2010 researchers were aiming at de�ning various invariant
strati�cations in the spaces of germs of special multi-�ags. The actual state of the art is re�ected
in [1].

A new approach [5] to the classi�cation starts with the e�ective (recursive) computation of all
in�nitesimal symmetries of special multi-�ags. (They are computed explicitly only for m = 2, but
implicitly for all m > 1. The recursive patterns depend uniquely on the so-called singularity classes
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of special m-�ags de�ned still in [3]. Those classes are coarser (hence fewer) than the RVT classes
recapitulated in [1].

Polynomial visualizations of objects in the singularity classes are called EKR's (Extended
Kumpera-Ruiz). They `only' feature �nite families of real parameters. Then the classi�cation prob-
lem is rephrased as a search for ultimate normalizations among such parameter families. Having an
explicit hold of the in�nitesimal symmetries at each prolongation step, the freedom in varying those
parameters is being reduced to solvability questions of (huge) systems of linear equations.

In fact, that linear algebra involves only partial derivatives, at the reference point, of the �rst
m + 1 components of a given in�nitesimal symmetry (which initially, by the classical Backlund
theorem, are completely free functions of m + 1 variables). Keeping the preceding part of a [germ
of a] �ag in question frozen imposes a sizable set of linear conditions upon those derivatives up to
certain order. Then some other linear combinations of them appear, or not, to be free � just in
function of the local geometry of the prolonged distribution. This, in short, determines the scope of
possible normalizations in the new (emerging from prolongation) part of EKR's.

When algorithmized to the software level, the present new approach will give an answer �lling in
the gap in knowledge as of 2010: on one side the local �nite classi�cation of special 2-�ags known in
lengths not exceeding four ([4]), on the other side the existence of a continuous numerical modulus
of that classi�cation in length seven.
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On limit cycles and resonances
in systems close to nonlinear Hamiltonian

Morozov A.D.

Lobachevsky State University of Nizhni Novgorod
morozov@mm.unn.ru

The purpose of this report is to give a short review of my basic results, concerning systems close
to nonlinear two-dimensional Hamiltonian.

• Limit cycles [1], [2]

• Resonances in periodic case [1], [2], [3]:

� bifurcations in non-degenerate zones
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� bifurcations in degenerate zones [4], [5]

• Resonances in quasi-periodic case [6]

The author thanks RFBR for the support under the grant 18-01-00306.
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On parametric quasi-periodic perturbations of
two-dimensional Hamiltonian systems

Morozov K.E.

Institute of Information Technology, Mathematics and Mechanics
Lobachevsky State University of Nizhni Novgorod

We consider non-conservative quasi-periodic perturbations of 2-dim Hamiltonian systems that
include terms depending on both t and the phase variables:

ẋ =
∂H(x, y)

∂y
+ ε[g0(x, y) + a(ω1t, ..., ωmt)g1(x, y)];

ẏ = −∂H(x, y)

∂x
+ ε[f0(x, y) + a(ω1t, ..., ωmt)f1(x, y)].

(1)

Here H, g0, f0, g1, f1 are nonlinear and assumed to be smooth while a and b are continuous and quasi-
periodic; ε is a small parameter. We examine a certain domainD = {(x, y)|h− ≤ H(x, y) ≤ h+} ⊂ R
�lled with closed phase curves of the unperturbed system. Resonance levels of energy are determined
by the condition nω(hn,k) = k1ω1+ ...+kmωm, n, k1, ..., km ∈ Z, where ω(h) is the natural frequency
of the unperturbed system. In the

√
ε-neighborhood of a �xed resonance level h = hnk we obtain

the following 2-dim averaged system

u̇ = A(v) +
√
εσ(v)u;

v̇ = b1u+
√
εb2u

2.
(2)
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A(v), σ(v) are 2π/n�periodic functions. In contrast to the previous studies [1,2], σ(v) is signalter-
native for the perturbation under consideration. This may result in the emergence of limit cycles
in (2) that correspond to quasi-periodic solutions in the initial system with m+ 1 frequencies. The
conditions of such tori existence are established. We use the equation

ẍ+ x+ x3 = ε((p1 − x2)ẋ+ (1 + xẋ) sin t sin
√
5t) (3)

to illustrate the study.
This work has been partially supported by the Russian Foundation for Basic Research under

grant no. 18-01-00306, the Ministry of Education and Science of the Russian Federation (project
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Analytical approach to synchronous states of globally coupled noisy rotators

Munyaev V.O.1, Smirnov L.A.1,2, Kostin V.A.1,2, Osipov G.V.1, Pikovsky A.S.3,1
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2Institute of Applied Physics, Russian Academy of Sciences
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The Kuramoto model is a paradigmatic model to study synchronization phenomena. In the
thermodynamic limit, stationary synchronized states can be found analytically for an arbitrary
distribution of natural frequencies [1]. Another analytical approaches also have restrictions since
they apply only for identical oscillators like the Watanabe�Strogatz theory, or for a population with
a Lorentzian distribution of frequencies like the Ott�Antonsen ansatz.

An important generalization of the Kuramoto model considers an ensemble of globally coupled
rotators. It is in particular relevant for modeling power grid networks [2]. Synchronization features
of deterministic and noisy globally coupled rotators have been widely studied. However, for noisy
coupled rotators, so far the stationary distributions were found only numerically.

We present a fully analytical approach to the problem of globally coupled noisy rotators for
small inertia. Based on this analysis, we derive the asymptotic form with respect to the small order
parameter and use it to classify the transition to synchrony as a supercritical or a subcritical one.

We consider an ensemble of N globally coupled rotators characterized by their angles φn and
velocities φ̇n (n = 1, 2, . . . , N). The rotators are coupled via the complex mean �eld and obey
equations of motion

R ≡ reiψ =
1

N

N∑
n=1

eiφn , µφ̈n + φ̇n = ωn + εr sin (ψ − φn) + σξn (t) . (1)

Parameter µ describes the mass of rotators. Parameter ε is the coupling strength. Parameters
ωn describe torques acting on rotators; we assume them to be distributed with a density g(ω).

99



The rotators are acted upon by the independent white Gaussian noise forcing σξn (t) with equal
amplitudes σ, zero means ⟨ξn (t)⟩ = 0, and auto-correlations ⟨ξn (t1) ξn′ (t2)⟩ = 2δnn′δ (t1 − t2).

A method of matrix continuous fractions was employed to solve Eqs. (1) in the thermodynamic
limit (N → ∞). The main result is the closed-form formula to the �rst order in the mass parameter
µ for the subgroup order parameter a0,1 (ν,A) for the case of frequency distributions g (ω) symmetric
with respect to ω0,

a0,1 (ν,A) =
1√
2π

I1+i ν
σ2

(
A
σ2

)
Ii ν

σ2

(
A
σ2

) (
1− µ

σ2

π

sin
(
iπ ν

σ2

)
I−i ν

σ2

(
A
σ2

)
Ii ν

σ2

(
A
σ2

))+ o (µ) . (2)

The general parametric representation of the order parameter as a function of the coupling constant,

r =
√
2π

∫
dνg (ω0 + ν) a∗0,1 (ν,A) , ε =

A

r
. (3)

The nontrivial branch of solutions r(ϵ) starts at

ε(1)c =

(
1

2

∫
dy
g
(
ω0 + σ2y

)
1 + y2

(
1− µσ2y2

))−1

. (4)

The character of the synchronization transition depends on the sign of the coe�cient C1,

C1 = − 1

8σ4

∫
dy

g
(
ω0 + σ2y

)
(1 + y2)2 (4 + y2)

(
2
(
1− 2y2

)
− µσ2y2

(
13 + y2

))
. (5)

Supercritical transition occurs for C1 < 0. Here one observes a continuous (second-order)

transition with the solution branch existing for ε > ε
(1)
c

r = C2
0

√(
ε
(1)
c − ε

)
/C1. (6)

Subcritical transition occurs for C1 > 0. Here, the branch of solutions exists for ε < ε
(1)
c .
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Stability by linear approximation
of time scale dynamical systems

Nazarov A.I.

St.Petersburg Dept of Steklov Math Institute
and St. Petersburg State University

We study systems on time scales that are generalizations of classical di�erential or di�erence
equations and appear in numerical methods. We consider linear systems and their small nonlinear
perturbations. In terms of time scales and of eigenvalues of matrices we formulate conditions, su�-
cient for stability/instability by linear approximation. We use techniques of central upper Lyapunov
exponents (a common tool of the theory of linear ODEs) to study stability of solutions. We develop
a new technique to demonstrate that methods of non-autonomous linear ODE theory may work for
time-scale dynamics.

The talk is based on joint paper with Sergey Kryzhevich [1].
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Phase change for perturbations of Hamiltonian systems

Neishtadt A.1, Okunev A.2
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We consider a small perturbation of a Hamiltonian system with one degree of freedom that has
a separatrix loop. We also assume that the perturbation is such that the solutions starting outside
the separatrix loop approach it and eventually cross it. For study of such systems see, e.g., [1] and
references therein.

We are interested in the change of phase while approaching the separatrix. A parameter called
the pseudo-phase ([2]) describes the phase at the moment of separatrix crossing. In [2] a formula for
the dependence of the pseudo-phase on the initial conditions was obtained for slow-fast Hamiltonian
systems. We show that a similar formula also holds for our case. The main tool we use is the
averaging method.

Acknowledgments. The work was supported by the Leverhulme Trust (Grant No. RPG-2018-
143).
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On universality of discrete Lorenz attractors in three-dimensional maps
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In papers [1, 2, 3, 4] a class of maps with constant Jacobian was studied, called three-dimensional
Henon maps:

x̄ = y, ȳ = z, z̄ = Bx+ f(y, z). (1)

It was shown that when map (1) possesses a �xed point x0 with eigenvalues (−1,−1,+1), and
condition

G = (c− a)(a− b+ c) > 0 (2)

is ful�lled, where a = 1/2f ′′yy(x0), b = f ′′yz(x0), c = 1/2f ′′zz(x0), then a discrete Lorenz attractor
is born near x0 in arbitrary small perturbations. The proof is based on the fact that the second
iterate of map (1) can be approximated by a �ow of a system of di�erential equations, which, in
turn, can be brought to the form of Shimizu-Morioka system by rescaling coordinates, parameters
and time. Existence of the Lorenz attractor in the latter implies the existence of the discrete Lorenz
attractor in map (1), because all the operation performed preserve the properties of attractivity and
chain-transitivity as well as the pseudo-hyperbolic structure.

It can be easily seen by [3, 4] that the violation of condition (2) implies immediately the existence
of a discrete Lorenz repeller in map (1). It follows from the fact that when G < 0, the map also can
be approximated by the Shimizu-Morioka system, but in this case the scaling factor of time should
be negative. Also it can be checked that if a map has G > 0, then its inverse has G < 0, and the
attractor becomes a repeller.

In the present work we aim to establish the existence of discrete Lorenz attractors in systems
with G < 0, namely we take the following map with G = −1 (this is the inverse to the 3D Henon
map studied in [1, 2]):

x̄ = y, ȳ = z, z̄ = Bx+M +Az − y2. (3)

In this system we �nd a period-4 orbit with multipliers (−1,−1,+1) and establish that condition (2)
is ful�lled at the points of this orbit for the fourth iterate of map (3), this means that the attractor
exists near it.

This result, in particular, implies that discrete Lorenz attractors are typical for bifurcations of
homoclinic and heteroclinic cycles in the case when the e�ective dimension of the problem is at least
three.
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Integrable and Non-Integrable Equations of the Korteweg-de Vries Hierarchy

Pelinovsky E.

Sector for modeling of extreme wave phenomena in the ocean
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

Here we consider the generalized Korteweg-de Vries (gKdV) equation in the form

∂u/∂t+ sun∂u/∂x+ ∂3u/∂x3 = 0

or
∂u/∂t+ s|u|p∂u/∂x+ ∂3u/∂x3 = 0,

where n is integer, p > 0 � is an arbitrary constant, and s = ±1. The Korteweg-de Vries (KdV,
s = 1, n = 1) equation and modi�ed Korteweg-de Vries (mKdV, s = ±1, n = 2) equation are famous
members of this series of equations. They are integrable and thoroughly investigated.

The gKdV equations with higher order of the nonlinearity, n > 2, may appear in the application
to the hydrodynamics of strati�ed �uid [1]. Some versions of the gKdV equation contain non-integer
values of p; for instance, the power p = 1/3 is present in the Schamel equation applicable to ion-
acoustic waves which interact with resonant electrons [2]. The log-KdV equation for solitary waves
in FPU lattices can be mentioned in addition [3]. In all papers cited above the main attention was
paid to the soliton dynamics, their stability and interactions. Dynamics of periodic and modulated
wave packets in KdV-like systems is less studied. Two problems are discussed here.

1. Dispersionless limit of the generalized KdV equation is a generalized Hopf equation. The
general explicit procedure to �nd the Fourier spectrum is described. In the case of a sinusoidal
initial condition all expressions are found in closed form. These results are presented in [4]. The
asymptotic shape of the spectrum of the breaking Riemann wave is found [5].

2. If the wave amplitude is small (wave dispersion prevails), the standard approach to investigate
the stability of weakly modulated wave trains is to derive the nonlinear Schr�odinger equation (NLS)
and to determine its type. For the classic KdV equation the modulations are described by the
defocusing NLS equation, and therefore waves packet are stable [6]. In the case of the mKdV
equation with s = +1 a wave train is modulationally unstable, what leads to the generation of
rogue waves [7]. In this work such analysis is extended to the gKdV equation. It is discussed in
the context of nonlinear mechanisms of rogue wave formation. These results are summarized in the
recent publications [8].

This study is supported by the Russian Science Foundation grant 19-12-00253.
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On 4-dimensional �ows with wildly embedded invariant manifolds
of a periodic orbit

Pochinka O.V., Shubin D.D.

Laboratory of Topological Methods in Dynamics
National Research University Higher School of Economics

Qualitative study of dynamical systems reveals various topological constructions naturally
emerged in the modern theory. For example, Cantor set with cardinality of continuum and Lebesgue
measure zero as expanding attractor or contracting repeller. Also, a curve in 2-torus with irrational
winding number, which is not a topological submanifold but is injectively immersed subset, can be
found being invariant manifold of Anosov toral di�eomorphism's �xed point.

Another example of intersection of topology and dynamics is the Artin-Fox arc [1] appeared in
work by D. Pixton [2] as the closure of a saddle separatrix of a Morse-Smale di�eomorphism on the
3-sphere. A wild behavior of the Artin-Fox arc complicates the classi�cation of dynamical systems,
it does not admit already a combinatorial description like to Peixoto's graph [3] for 2-dimensional
Morse-Smale �ows.

It is well known that there are no wild arcs in dimension 2. In dimension 3 they exist and can be
realize as invariant set for a discrete dynamics, in di�erent from regular 3-dimensional �ows, which
do not possess wild invariant sets. The dimension 4 is very rich. Here wild objects appear both for
discrete and continuous dynamics. Despite the fact that there are no wild arcs in this dimension,
there are wild objects of co-dimension 2. So the closure of 2-dimensional saddle separatrix can
be wild for 4-dimensional Morse-Smale system (di�eomorphism or �ow). Such examples recently
were constructed by V. Medvedev and E. Zhuzoma [4]. T. Medvedev and O. Pochinka [5] shown
as wild Artin-Fox 2-dimension sphere appears as closure of heteroclinic intersection of Morse-Smale
4-di�eomorphism.

In the present paper we prove that the suspension under a non-trivial Pixton's di�eomorphism
provides a 4-�ow with wildly embedded 2-dimensional invariant manifold of a periodic orbit. More-
over, we show that there are countable many di�erent wild suspensions.
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Combinatorial Ricci �ow for degenerate circle packing metrics

Popelensky Th.Yu.1

1MSU, Dept. of Mech. and Math.

Chow and Luo [1] in 2003 had shown that the combinatorial analogue of the Hamilton Ricci on
surfaces under certain conditions converges to Thruston's circle packing metric of constant curvature.
The combinatorial setting includes weights de�ned for edges of a triangulation. Crucial assumption
in the paper [1] was that the weights are nonnegative. Recently we have shown that same statement
on convergence can be proved under weaker condition, see [3]

On the other hand, for weights not satisfying conditions of Chow-Luo's theorem we observed in
numerical simulation a degeneration of the metric with certain regular behaviour patterns, [2].

In the talk, based on joint papers with Ruslan Pepa, we introduce degenerate circle packing
metrics, and under weakened conditions on weights, prove that under certain assumptions an ana-
logue of the combinatorial Ricci �ow for any initial metric has a unique limit metric with a constant
curvature outside of singularities. [4]

Assume T is a triangulation of a closed suface X. We assume that a lift of a closed face or an
edge to the universal cover X̃ is an embedding. Denote the sets of vertices, edges and faces of T
by V , E, F correspondingly. Divide the set of vertices into a disjoint union V = Vn ⊔ Vd, such
that there is no edge connecting two vertices from Vd. Without loss of generality we can assume
Vn = {A1, . . . , AM} and Vd = {AM+1, . . . , AN}. Vertices from Vn are called nondegenerate and
vertices from Vd are called degenerate. Call a cell of T (that is edge or face) nondegenerate i� all its
vertices are nondegenerate, and degenerate otherwise. Denote the set of (non)degenerate edges and
faces by Ed (En) and Fd (Fn), correspondingly. Clearly, E = En ⊔ Ed and F = Fn ⊔ Fd.

A weight is a function w : En → (−1, 1]. Fix a triple (X,T,w). A (degenerate) circle packing
metric is de�ned by a collection of numbers r = (r1, r2, . . . , rN ), where rj > 0 for 1 ≤ j ≤ M and
rj = 0 for M + 1 ≤ j ≤ N . This de�nition di�ers from the classical circle packing metric where all
rj are positive, see [1]. For the Euclidean background de�ne the length of an edge connecting two
vertices Ai and Aj by the formula l

2
ij = r2i + r

2
j +2rirjwij . For a degenerate edge one of the numbers

ri or rj is zero, therefore the last summand is assumed to be zero although the weight wij is not
de�ned. Moreover, if ri = 0 then lij = rj . The curvature Ki at the vertex Ai is de�ned in a usual
way:

Ki = 2π −
∑

△AiAjAk∈F
∠AkAiAj .

The curvature at a degenerate vertex Ai ∈ Vd does not depend on r and can be expressed in
terms of the weight w:

Ki = 2π −
∑

△AiAjAk∈F
(π − arccos(wjk)).
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The combinatorial Ricci �ow is the system of ODE

dri
dt

= −Kiri, i = 1, . . . ,M.

For i = M + 1,M + 2, . . . , N we have ri =
dri
dt = 0, hence in the previous formula we can assume

1 ≤ i ≤ N .
For a degenerate metric de�ne the averaged curvature Kav:

Kav =
1

M

2πχ(X)−
N∑

j=M+1

Kj

 .

The normalized combinatorial Ricci �ow is the system of ODE

dri
dt

= −(Ki −Kav)ri, i = 1, . . . ,M.

The normalized and non-normalized Ricci �ows are in a certain sence equivalent. Namely, func-
tions ri(t), i = 1, . . . ,M are a solution of the non-normalized �ow i� functions eK

avtri(t) are solution
for normalized �ow.

For the hyperbolic background geometry the length of the edge eij joining vertices Ai and Aj
is de�ned by the equation cosh lij = cosh ri cosh rj + sinh ri sinh rjwij . As in the Euclidean case for
degenerate edge one of the radii ri or rj is zero so the last summand is assumed to be zero though
the weight wij is unde�ned. Clearly for ri = 0 one has lij = rj . The curvature Ki at the vertex Ai
is de�ned by the same formula as in Euclidean case.

Hyperbolic combinatorial Ricci �ow � is the system of ODE

dri
dt

= −Ki sinh ri, i = 1, . . . ,M.

For i =M+1,M+2, . . . , N one has ri =
dri
dt = 0, hence in this equations one can assume 1 ≤ i ≤ N .

We say that a weight function satis�es condition (W ), any face of the triangulation satis�es one
of the following conditions:

(a) the face is nondegenerate and all the weights of its edges are nonnegative;
(b) the face is nondegenerate, exactly one weight α of its edges is negative, two others weights

β, γ are positive, and α+ βγ ≥ 0;
(c) the face is degenerate and the weight of the nondegenerate edge of the face is not equal to 1.

Theorem 1. Suppose X is a closed surface with a triangulation T and a weight w, satisfying the
condition (W ).

The solution to the normalized Ricci �ow converges for any initial metric i� for any proper subset
I ∈ Vn,

|I|Kav +
∑
j∈DI

Kj > −
∑

(e,v)∈Lk(I∪DI)

(π − arccosw(e)) + 2πχ(FI∪DI
). (1)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with Ki =
Kav, i = 1, . . . ,M .
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Theorem 2. Suppose X is a closed surface of negative Euler characteristic with a triangulation T
and a weight w, satisfying the condition (W ).

The solution to the hyperbolic Ricci (1) �ow converges for any initial metric i� for any subset
I ∈ Vn, ∑

j∈DI

Kj > −
∑

(e,v)∈Lk(I∪DI)

(π − arccosw(e)) + 2πχ(FI∪DI
). (2)

Furthermore, if the solution converges, then it converges exponentially fast to the metric with Ki = 0,
i = 1, . . . ,M .
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On Interactions Between Flexural and Torsion Vibrations of a Bar
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In the paper we consider a boundary-value problem for equations of �exural-torsional vi-
brations of a bar, described by the system of two di�erential equations in the domain Q =
{0 < x < l, 0 < t < T}:

E I
∂4y

∂x4
+ ρA

∂2y

∂t2
− ε ρA

∂2θ

∂t2
= 0 , (1)

−GC ∂2θ

∂x2
− ε ρA

∂2y

∂t2
+ ρ (I +Aε2)

∂2θ

∂t2
= 0 , (2)

where y(x, t) is the lateral displacement of the bar, θ(x, t) is the turning angle of the bar cross-
section, E is the Young modulus, I is a polar inertia moment of the cross section with respect to its
gravity center, ρ is a density of the bar material, A is the area cross section, G a shear modulus, C
is geometrical rigidity of free torsion and ε is the distance from the gravity center to the center of
torsion of the bar (see [1] and references there in).

We underline that in equation (2) we neglect by the sectional moment of inertia of the bar's
cross-section.

These equations ought to be provided by initial conditions:

y(x, 0) = y0(x) ,
∂y

∂t
(x, 0) = y1(x) , 0 ≤ x ≤ l , (3)
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θ(x, 0) = θ0(x) ,
∂θ

∂t
(x, 0) = θ1(x) , 0 ≤ x ≤ l . (4)

Further let us suppose that ε is small parameter: 0 < ε ≪ 1. In this case system (1)-(2) is
closely connected with the problem of in�uence of small distinction between the gravity center and
the center of torsion of the cantilever of scanning probe microscope on precision of measurement of
the local properties of the solid body surface.

In order to answer on this question �rst of all one ought to solve system (1)-(2) with homogeneous
boundary conditions:

y|x=0 = 0 ,
∂y

∂x
|x=0 = 0 ,

∂2y

∂x2
|x=l = 0 ,

∂3y

∂x3
|x=l = 0 , 0 ≤ t ≤ T , (5)

θ|x=0 = 0 ,
∂θ

∂x
|x=0 = 0 , 0 ≤ t ≤ T . (6)

In this preliminary investigation we construct solution of this problem in the framework of the
perturbation theory:

y(x, t) =

∞∑
k=0

εk y(k)(x, t) , θ(x, t) =

∞∑
k=0

εk θ(k)(x, t) . (7)

Under ε = 0 input system (1)-(2) is split on two independent equations namely initial approxi-
mation y(0)(x, t) for the lateral displacement of the bar obeys to the next equation:

E I
∂4y(0)

∂x4
+ ρA

∂2y(0)

∂t2
= 0 . (8)

Equation (8) we solve exactly with initial conditions (3) and boundary conditions (5).
Initial approximation θ(0)(x, t) for the turning angle of the bar cross-section obeys to the following

equation:

−GC ∂2θ(0)

∂x2
+ ρ I

∂2θ(0)

∂t2
= 0 . (9)

Equation (9) we solve exactly with initial conditions (4) and boundary conditions (6).
Equations for higher order approximations y(k)(x, t) and θ(k)(x, t) we obtain substituting asymp-

totic series (7) into input system (1)-(2). After that we solve these equations with the same boundary
conditions (5)-(6) but with zero initial conditions.

Work of A.E. Rassadin was supported by Russian Foundation for Basic Research, grant No 18-
08-01356-a.
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C0-group generated by Fourier transform and
C0-group that includes Fourier transform

Remizov I.D.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

We consider well-known Fourier transform in the space of all square integrable functions on the
real line. Using spectral representation of the unitary Fourier transform operator F we construct two
one-parameter groups of linear bounded operators: A(t)=exp(tF) for which F is the in�nitesimal
generator, and B(t) satisfying B(1)=F. In other words, we compute the exponent and the logarithm
of F. It seems natural that those groups may be helpful in mathematical physics and studies of
evolution equations, however the research in this direction is in the very beginning now.

Scenarios of transition to chaos
in the discrete�time predator�prey model

Revutskaya O.L., Kulakov M.P., Frisman E.Ya.

Laboratory of mathematical modeling of population and ecological systems
Institute for Complex Analysis of Regional Problems, FEB RAS

The study of biological communities, such as predator�prey or host�parasite systems, is one of
the most important environmental problems. Predator�prey interactions are crucial to formation
of the species composition in a community and their dynamics. In particular, predator�prey in-
teractions can cause �uctuations in the numbers of both interacting species and can amplify such
�uctuations if they exist due to other causes. In this work, we present a new look at the problem of
complex dynamics that can arise between a prey and a predator. This paper investigates scenarios
of transition to chaos in the predator�prey model with age structure for prey. We use a slight mod-
i�cation of the Nicholson�Bailey model to describe the interaction between predator and prey. We
assume the population size is regulated by decreasing juvenile survival rate with growth of age class
sizes. The model considered may be written as a system of three equations:

Xn+1 = rYn exp(−bZn),
Yn+1 = exp(−αXn − βYn)Xn + vYn,
Zn+1 = crYn(1− exp(−bZn)),

(1)

where n is a reproductive season number; X and Y are the population size of juveniles and adults
of prey (hosts), respectively; Z is the number of predators (parisitoids); r is the birth rate of prey
(hosts); v is the survival rate of prey adults; b is the attack rate of the predator; c is a measure of
the �conversion� of hosts (prey) into predators the following year. The survival rate of immature
individuals of prey is selected as the Ricker model: exp(−αXn − βYn), where α and β are the
parameters describing the intensity of intrapopulation competition.

We made the analytical and numerical research of the mathematical model. For making the
numerical experiments, we have elaborated the software systems to construct of bifurcation diagrams,
attraction basins, and charts of dynamic modes, eigenvalues and Lyapunov exponents.

Conditions for sustainable coexistence of interacting species are described. It is shown that
the coexistence of species becomes possible if there are a transcritical or saddle�node (tangential)
bifurcations. Due to the saddle�node bifurcation there is bistability in the system of interacting
species: predator either coexists with prey or dies depending on the initial conditions.
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It is shown, with changing parameters' values and transition through the stability domain bound-
ary the stability loss of the �xed point may occur according to both scenarios: the period doubling
and the Neimark�Sacker bifurcation. Consequently depending on the values of the model parame-
ters, the transition to chaos can be realized through the period doubling or through the destruction
of the invariant curve.

The characteristic of the �rst scenario is that the eigenvalues pair of a �xed point is almost always
imaginary (a �xed point is a saddle�focus). Therefore, the loss of stability of the 2�cycle is rarely
accompanied by a period doubling cascade. The 2�cycle loses stability due to the Neimark�Sacker
bifurcation. As a result, two invariant curves are formed around each periodic point. Further,
there are two possible options for complicating of the attractor. First, a single doubling of the
invariant curve occurs and a two�component strange attractor of the torus�chaos type emerges.
Secondly, when parameters pass through resonant cycles, the invariant curve is strongly deformed
and complexly wraps around the initial saddle cycle and a super�spiral attractor is formed. In both
cases, a strange homoclinic attractor of period 2 emerges. Then the model trajectories are strongly
mixed. As a result, in addition to periodic points, the new completely non�periodic attractor contains
�xed points as well.

The second scenario is associated with the formation of a non�orientable Shilnikov funnel based
on a single invariant curve formed according to the classical Neimark�Sacker bifurcation scenario. As
a consequence of the period doubling bifurcation, the curve becomes a saddle, and in its neighborhood
there is a pair of stable invariant curves of period 2. Unlike the classical or orientable case, these
curves do not wrap around the initial curve, but are located in its neighborhood. With a further
change in the bifurcation parameter, two super�spiral attractors are formed on the basis of the
doubled invariant curve. Their fusion forms a non�homoclinic attractor of the torus�chaos type,
which does not contain a �xed point.

This work was performed in the framework of the State targets of the Institute of Complex Analysis
of Regional Problem FEB RAS and partially supported by the Russian Foundation for Basic Research
(no. 18�51�45004 IND_a).

Unfolding a Bykov attractor: from an attracting torus to strange attractors

Rodrigues A.

Center of Mathematics, University of Porto
Sciences Faculty, University of Porto, Portugal

We present a comprehensive mechanism for the emergence of strange attractors in a two-
parametric family of di�erential equations acting on a three-dimensional sphere. When both pa-
rameters are zero, its �ow exhibits an attracting heteroclinic network (Bykov network) made by two
1-dimensional and one 2-dimensional separatrices between two hyperbolic saddles-foci with di�erent
Morse indices. After slightly increasing both parameters, while keeping the one-dimensional connec-
tions unaltered, we focus our attention in the case where the two-dimensional invariant manifolds of
the equilibria do not intersect.

Under some conditions on the parameters and on the eigenvalues of the linearization of the vector
�eld at the saddle-foci, we prove the existence of many complicated dynamical objects, ranging from
an attracting quasi-periodic torus, Newhouse sinks to H�enon-like strange attractors, as a consequence
of the Torus Bifurcation Theory (developed by Afraimovich and Shilnikov).

Under generic and checkable hypothesis, we conclude that any analytic unfolding of a Hopf-zero
singularity (within the appropriate class) contains strange attractors.
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On Modeling of One Unstable Bifurcation in the Dynamics of Vortex Structures

Ryabov P.E.1,2,3, Sokolov S.V.2,3,4, Shadrin A.A.1,5

1Financial University under the Government of the Russian Federation
2Institute of Machines Science, Russian Academy of Sciences

3Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
4 Moscow Institute of Physics and Technology (State University)
5 Faculty of Computer Science, University of Vienna, Austria

This report is devoted to the results of phase topology research on a generalized mathematical
model, which covers such two problems as the dynamics of two point vortices enclosed in a harmonic
trap in a Bose-Einstein condensate [1] and the dynamics of two point vortices bounded by a circular
region in an ideal �uid [2]. This model leads to a completely Liouville integrable Hamiltonian system
with two degrees of freedom, and for this reason, topological methods used in such systems can be
applied.

In this talk, we analytically derive equations that de�ne the parametric family of bifurcation
diagrams of the generalized model, including bifurcation diagrams of the speci�ed limiting cases. The
dynamics of the bifurcation diagram in a general case is shown using its implicit parametrization. A
stable bifurcation diagram, related to the problem of dynamics of two vortices bounded by a circular
region in an ideal �uid, is observed for particular parameters' values. Interactive visualization of
the bifurcation diagram was made by A.A. Shadrin based on the equations of a bifurcation diagram
and reduction to a system with one degree of freedom in the general case [3] and [4].

New bifurcation diagrams are obtained and three-into-one and four-into-one tori bifurcations are
observed for some values of the physical parameters of the model. The three-into-one tori bifurcation
was previously encountered in the works of M.P. Kharlamov in studying the phase topology of the
integrable Chaplygin-Goryachev-Sretensky case in the dynamics of a rigid body [5] and as one of the
features in the form of a 2-atom of a singular layer of Liouville foliation in the works of A.T. Fomenko,
A.V. Bolsinov, S.V. Matveev [6]. In the work of A.A. Oshemkov and M.A. Tuzhilin [7], devoted to
the splitting of saddle singularities, such a bifurcation turned out to be unstable and its perturbed
foliations, one of which is realized in the integrable model under consideration, are given.

The work of S.V. Sokolov was carried out at MIPT under project 5-100 for state support for
leading universities of the Russian Federation and also partially support by RFBR grant 18-01-00335
and by the RSF no. 19-71-30012. The work of P. E. Ryabov was supported by RFBR grant 17-01-
00846 and was carried out within the framework of the state assignment of the Ministry of Education
and Science of Russia (project no. 1.2404.2017/4.6) and by the RSF grant no. 19-71-30012.
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Various aspects of mixed dynamics in the perturbed Chirikov map.

Safonov K.A., Kazakov A.O., Samylina E.A.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

In this work, we show how to perturb the Chirikov standard map breaking conservativity but
keeping reversibility of this map and discuss various mixed dynamics phenomena that appear after
the perturbation.

Chirikov standard map is one of the best-known examples of reversible area-preserving (moreover,
symplectic) maps. It is well known that this map demonstrates typical for symplectic map transition
from integrable dynamics to Hamiltonian chaos when changing a parameter. We consider this map
in the following form:

T : x̄ = x+ y, ȳ = y +K sin(2πx̄) mod 1. (1)

where x and y are 1-periodic phase variables and K is a parameter. Note, that this map is reversible
with respect to the involution

I : x̄ = x+ y, ȳ = −y. (2)

Moreover the map under consideration has the following symmetry:

S : x̄ = −x, ȳ = −y. (3)

At K = 0, the map is integrable, its phase space is foliated into invariant tori. When K
increases some tori become resonant and the pairs of symmetrical saddle and elliptic orbits appear.
The neighborhood of each elliptic periodic orbit, in this case, is surrounded by a continuum of
KAM-curves. These KAM-curves are separated by resonant zones with garlands originated near
the alternating saddle and elliptic periodic orbits which appear in the neighborhood of resonant
elliptic point with multipliers e±ip/q. For a typical two-dimensional symplectic map, such garlands
are formed near a pair of saddle and elliptic orbits. However, for Chirikov map the structure of some
resonances di�ers from the typical one. Here garlands around elliptic points belonging to Fix(S)
and corresponding to odd q contain two pairs of elliptic orbits and two pairs of saddle orbits [1].
Using normal form theory we explain such speci�c structure of these resonant orbits.

The second part of this work is connected with the study of a perturbed Chirikov map of the
following form:

F : x̄ = x+ y, ȳ = y +K sin(2πx̄) + εQ(y, ȳ) mod 1. (4)

The function Q(y, ȳ) is chosen so the map F is also reversible with respect to the involution I or
I ◦ S but is not conservative (area-preserving) for ε ̸= 0. Non-symmetrical orbits here, which does
not belong to the lines Fix(I) or Fix(I ◦ S), are not longer conservative for ε ̸= 0. We show that
depending on the functions Q(y, ȳ) this map can demonstrate three general types of resonances for
odd q near the symmetrical elliptic �xed point O:
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• Non-isolating resonances with sinks and sources. In this case, a garland around resonant
elliptic point consists of two pairs of symmetrical saddle orbits and a pair of a sink and a
source.

• Isolating resonances. As in the previous case, a garland around O consists of two pairs of
symmetrical saddle orbits and a pair of sink and source. However stable and unstable manifolds
of the symmetrical saddles form an impassable for ε-orbits region (see [2]). In this case elliptic
point O is stable with respect to the permanently acting perturbation and thus it is an example
of a reversible core � such a stable set which belongs to both an attractor and a repeller.

• Resonances containing Lamb-Stenkin heteroclinic cycles. Here, the garland around O consists
of a pair of symmetrical elliptic orbits and a pair of area-contracting and area-expanding
saddle orbits. One pair of invariant manifolds of the saddle orbits intersects transversally
while another pair forms quadratic tangency. As it is proved in [3] near such heteroclinic
cycles there exist in�nite sets of sinks, sources and elliptic points whose closure forms a non-
empty intersection, i.e. chaos inside regions with such cycles is mixed.

Finally, we show in this work that the perturbed Chirikov map demonstrates the merger of
a strange attractor and a strange repeller phenomenon which leads to the emergence of strongly
dissipative mixed dynamics [4, 5]. After such a merger the attractor and the repeller of the system
have a non-empty intersection but are di�erent from each other and this di�erence does not seem to
vanish with a reasonable increase in the computation time. The corresponding bifurcations leading
to the emergence of strongly dissipative mixed dynamics are studied in detail.
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Features of the study of chaotic attractors in radiophysical generators

Seleznev E.P., Stankevich N.V.

Kotel'nikov's Institute of Radio-Engineering and Electronics of RAS

Complex oscillations are widespread in radiophysics [1-2]. Oscillatory regimes can be classi-
�ed into: periodic, quasiperiodic, and chaotic. Quasiperiodic oscillations are a class of oscillations
widespread in science and technology [3]. Recently, much attention has been paid to this type of
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oscillation, since, on the one hand, they are not as complex as chaotic, but also non-periodic, which
makes them interesting for analysis. The issues of diagnosis of such oscillations are very relevant
and in the experiment are quite di�cult to implement.

In the frame of this work we will provide an overview of the techniques for distinguishing complex
oscillatory modes. For the numerical analysis of such systems, the most e�ective is the analysis of
the full spectrum of Lyapunov exponents, which makes it possible to distinguish between chaotic
and quasiperiodic oscillations, also to identify hyperchaotic oscillations and to classify quasiperiodic
oscillations with a di�erent number of incommensurable frequencies. It is enough di�cult task to
calculate the spectrum of Lyapunov exponents by time series in an experiment; examples of analysis
of the Fourier spectra of various signals will be shown, as well as a methodology for constructing an
invariant curve using a multiple Poincar�e section [4].

The work was supported by the RSF, project 17-12-01008.
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Transcendental First Integrals of Dynamical Systems

Shamolin M.V.

Institute of Mechanics
Lomonosov Moscow State University

In this paper, we examine the existence of transcendental �rst integrals for some classes of
systems with symmetries. We obtain su�cient conditions of existence of �rst integrals of second-
order nonautonomous homogeneous systems that are transcendental functions (in the sense of the
theory of elementary functions and in the sense of complex analysis) expressed as �nite combinations
of elementary functions.

The results of the present paper develop previous studies, including some applied problems of
the rigid-body dynamics (see [Sham1, Sham2, Sham3], where complete lists of transcendental �rst
integrals expressed as �nite combinations of elementary functions were obtained). Later, this fact
allowed one to perform an analysis of all phase trajectories and to indicate rough properties that
are preserved for systems of a more general form. The complete integrability of such systems is
associated with hidden symmetries.

As is well known, the concept of integrability, generally speaking, is quite vague. It is necessary
to consider the sense in which it is meant (i.e., a certain criterion that allows one to conclude that
trajectories of a dynamical system have an especially "attractive and simple structure"), and in
which class of functions �rst integrals are taken, and so on (see also [Sham4, Sham5]).

In this paper, we accept an approach in which the class of �rst integrals consists of elementary
transcendental functions. Here the transcendence is meant not only in the sense of the elementary
functions (e.g., trigonometric) but in the sense of complex analysis, i.e., as functions of a complex
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variable possessing essential singular points. In this case these functions must be formally continued
in the complex domain.

Of course, in the general case, the construction of any integration theory of such nonconservative
systems (even of low dimension) is quite di�cult. But in some cases where the systems studied
possess additional symmetries, one can �nd �rst integrals as �nite combinations of elementary func-
tions.
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Applications of intrinsic shape to dynamical system

Shekutkovski N.

University of St. Cyril and Methodius, Skopje, Macedonia

The intrinsic shape of various types of sets that appear in Dynamical systems gives an important
information about the behavior of a dynamical system.

A brief introduction to intrinsic shape and a comparison with homotopy type will be given.
Several results will be presented about intrinsic shape of chain recurrent set and non-saddle set
generalizing previous results about attractors.

Linearization and integrability of nonlinear non�autonomous oscillators

Sinelshchikov D.I.

Department of Applied Mathematics
National Research University Higher School of Economics

In this talk we consider the following family of nonlinear oscillators

yzz + f(z, y)y2z + g(z, y)yz + h(z, y) = 0, (1)

115



where f , g and h are su�ciently smooth functions and g(z, y) ̸≡ 0. Particular cases of (1) of-
ten appear in various applications in mechanics, physics and biology (see, e.g. [1, 2]). We study
linearizability conditions for (1) into

wζζ + βwζ + αw = 0, (2)

via the following nonlocal transformations

w = F (z, y), dζ = G(z, y)dz. (3)

Here α, β ̸= 0 are arbitrary parameters and F and G are su�ciently smooth functions satisfying
FyG ̸= 0. Linearization of (1) into (2) via (3) was studied previously only for some particular cases
of (3), namely Fy = Gy = 0 and Fz = 0 (see [3, 4, 5] and references therein). Here we consider
the general case of transformations (3) and provide linearizability conditions for (1) via (3) in the
explicit form. We show that in the linearizable case of (1) not only can we obtain the general solution
of the corresponding equation with the help of the general solution of (2), but we also can explicitly
construct a �rst integral for (1) via a known �rst integral for (2). We also demonstrate that there
are several interesting examples of both autonomous and nonautonomous oscillators that can be
linearized via (3) with Fz ̸= 0. In particular we consider a generalization of the Du�ng�van der
Pol oscillator, a cubic Li�enar oscillator with linear damping and some other examples and construct
their general solutions in the parametric form along with their �rst integrals.

This work is supported by RSF grant 19-71-10003.
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Minimal generating sets and the structure of
Wreath product of groups with non-faithful action

Skuratovskii R.1, Williams A.2

1Lecturer, FICT, NTUU, KPI, Kiev
2Mathematics Institute, Cardi� University

We denote by d(G) the minimal number of generators of the group G [1, 4]. A di�eomorphism
h : M → M is said to be f -preserving if f ◦ h = f . This is equivalent to the assumption that h is
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invariant for each level-set, i.e. f−1(c), c ∈ P of f , where P denotes either the real line R or the
circle S1.

Let G be a group. The commutator width of G [3], denoted by cw(G), is de�ned to be the least
integer n, such that every element of G′ is a product of at most n commutators if such an integer
exists, and otherwise is cw(G) = ∞. The following Lemma imposes the Corollary 4.9 of [2].

Lemma 1. An element of form (r1, . . . , rp−1, rp) ∈ W ′ = (B ≀ Cp)′ if and only if the product of all
ri (in any order) belongs to B′, where p ∈ N, p ≥ 2, where ri = higa(i)h

−1
ab(i)g

−1
aba−1(i)

, h, g ∈ B and

a, b ∈ Cp.

Lemma 2. For any group B and integer p ≥ 2, if w ∈ (B ≀ Cp)′, then w can be represented by
making use of the following wreath recursion

w = (r1, r2, . . . , rp−1, r
−1
1 . . . r−1

p−1

k∏
j=1

[fj , gj ]),

where r1, . . . , rp−1, fj , gj ∈ B and k ≤ cw(B).

Theorem 1. If the orders of cyclic groups Cni, Cnj are mutually coprime i ̸= j, then the group
G = Ci1 ≀ Ci2 ≀ · · · ≀ Cim admits two generators, namely β0, β1.

Let
n
≀

j=0
Cij be generated by β0 and β1 and

m
≀
l=0
Ckl = ⟨α0, α1⟩. Denote an order of g by |g|.

Theorem 2. If (|α0|, |β0|) = 1 and (|α1|, |β1|) = 1, or if (|α0|, |β1|) = 1 and (|α1|, |β0|) = 1, then

there exists generating sets of two elements for the wreath-cyclic group G = (
n
≀

j=0
Cij ) × (

m
≀
l=0
Ckl),

where ij are orders of Cij .

We have found an upper bound for the generator number of G′. Let A be a group and B a
permutation group, i.e. a group A acting upon a set X, where the active group A can act not
faithfully.

Theorem 3. If W = (A, X) ≀ (B, Y ), where |X| = n, |Y | = m and active group A acts on X
transitively, then

d
(
G′) ≤ (n− 1)d(B) + d(B′) + d(A′).

We consider when the active group can be either �nite or in�nite and consider a center of
such group. This consideration is a generalization of Theorem 4.2 from the book [2]. Let X =
{x1, x2, . . . , xn} be an A-space. If a non-faithful action by conjugation determines a shift of copies
of B from the direct product Bn, then we do not have the standard wreath product (A, X) ≀ B which
is a semidirect product of A and

∏
xi∈X

B, i.e. Anφ(B)n.

Corollary 1. A center of the group (A, X) ≀ B is the direct product of the normal closure of the
center of the diagonal of Z(Bn), i.e. (E × Z(△(Bn))), trivial an element, and the intersection of
(K)× E with Z(A). In other words, we have

Z((A, X) ≀ B) = ⟨(1; h, h, . . . , h︸ ︷︷ ︸
n

), e, Z(K, X) ≀ E⟩ ≃ (Z(A) ∩ K)× Z(△(Bn)),

where h ∈ Z(B), |X| = n.
For the restricted wreath product with n non-trivial coordinates, we have Z((A, X) ≀ B) =

⟨(1; . . . , h, h, . . . , h, . . .), e, Z(K, X) ≀ E⟩ ≃ (Z(A) ∩ K)× Z(△(Bn)).
In case of unrestricted wreath product, we have Z((A, X) ≀ B) =

⟨(1; . . . , h−1, h0, h1, . . . , hi, hi+1, . . . , ), e, Z(K, X) ≀ E⟩ ≃ (Z(A) ∩ K)× Z(△̃(B)).
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Remark 1. The quotient group of a restricted wreath product G = Z ≀X Z by a commutator subgroup
is isomorphic to Z × Z. Making use of previous conditions, we have if G = A ≀X B, then G/G′ =
A/A′×B/B′. If G = Zn ≀Zm, where (m, n) = 1, then d(G/G′) = 1. If G = Z ≀Z is an unrestricted
regular wreath product, then G/G′ ≃ Z × E ≃ Z.

The minimal set of generators for the fundamental group π1(Of , f) of orbits of one function f
with respect to the action of the group of di�eomorphisms of non-moving ∂M has been found here.

Theorem 4. The group H ≃ Zn(Z)n = ⟨ρ, τ⟩ with de�ned above homomorphism in AutZn has
two generators and non trivial relations, namely

ρnτρ−n = τ−1, ρiτρ−iρjτρ−j = ρjτρ−jρiτρ−i, 0 < i, j < n.

This group admits another presentation which makes use of generators and relations, namely⟨
ρ, τ1, . . . , τn

∣∣ρτi(mod n)ρ−1 = τi+1(mod n) , τiτj = τjτi, i, j ≤ n
⟩
.

References

[1] A. Lucchini. Generating wreath products and their augmentation ideals. Rendiconti del Semi-
nario Matematico della Universit�a di Padova, 98:67�87, 1997.

[2] J.D. Meldrum. Wreath products of groups and semigroups. CRC Press, volume 74, 1995.

[3] N. Nikolov. On the commutator width of perfect groups. Bulletin of the London Mathematical
Society, 36(1):30�36, 2004.

[4] Skuratovskii R. V. Involutive irreducible generating sets and structure of sylow 2-subgroups of
alternating groups. ROMAI J., 13 Issue 1, (2017), pp. 117-139.

Mathematical Models of Rogue Waves

Slunyaev A.V.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics, Nizhny Novgorod, Russia

Sector for modeling of extreme wave phenomena in the ocean
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

The rogue wave problem originates in the ocean-related application, though today it is under-
stood in broader sense. Abnormally large waves which occur on the sea surface have been discovered
not long ago, see reviews and the discussion of promising researches in [1, 2]. The nonlinear mod-
ulational instability have been suggested as a regular mechanism which can alter the probability
distribution function for wave heights and result in a larger likelihood of extreme events. This
mechanism is related to the formation of nonlinear coherent wave patterns, which possess their own
dynamic features. Within the frameworks of idealized evolution equations which can be analyzed
with the help of the Inverse Scattering Transform (the Korteweg � de Vries equation, KdV, and the
nonlinear Schr�odinger equation and their generalizations), the simplest long-living coherent patterns
correspond to solitons and envelope solitons respectively.

In this paper we discuss the e�ects of the dynamics of ensembles of solitons in long-wave models
(KdV equation and modi�ed KdV, mKdV, and Gardner equations of the focusing type), which

118



may lead to the generation of extremely large waves. These problems belong to so-called 'soliton
turbulence', though instead of the consideration of the density of the 'soliton gas' within the kinetic
approach, we focus on the wave amplitudes. The role of multiple soliton and breather interactions
in the formation of very high waves is disclosed. The discovered scenario depends crucially on the
soliton polarities and breather phases, and is not described by kinetic models.

In particular, conditions of optimal (synchronized) collisions of any number of solitons and
breathers are studied within the framework of the Gardner equation (GE) with positive cubic non-
linearity, which in the limits of small and large amplitudes tends to the classic and the modi�ed
Kortewe-de Vries equations respectively. To this end theN -soliton-M -breather solution is considered
for any natural numbers N and M . The solution is constructed with the help of the Darboux trans-
form, following the technique suggested in [3]. The wave amplitude in the focal point is calculated
exactly. It exhibits a linear superposition of partial amplitudes of the solitons and breathers (see
details in [4, 5]). The crucial role of the choice of proper soliton polarities and breather phases on
the cumulative wave amplitude in the focal point is demonstrated. Solitons are most synchronized
when they have alternating polarities. The straightforward link to the problem of synchronization
of envelope solitons and breathers in the focusing nonlinear Schr�odinger equation is discussed (then
breathers correspond to envelope solitons propagating above a condensate).

The soliton dynamics in the focal point is essentially nonlinear and may su�er from weak dis-
turbances, including inaccuracy of a numerical code. This e�ect strengthens when the number of
colliding solitons grows [6]. As a result, solitons of opposite polarities with close velocities may
transform to breathers, which seem to be more stable nonlinear wave structures.

The research is supported by the Basic Research Program of the National Research University
Higher School of Economics, and by the RFBR grant No 18-02-00042.
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Derivatives of generalized measures on in�nite dimensional spaces
and quantum anomalies

Smolyanov O.G

Laboratory of in�nite-dimensional analysis and mathematical physics
Lomonosov Moscow state University

One says about the quantum anomaly if after the quantization of the Lagrangian or Hamiltonian
system, whose action is invariant with respect to a transformation, one gets a quantum system
dynamics of which is not invariant with respect to the same transformation. Recently (2003 and 2006)
Oxford University Press and Cambridge University Press published two books in which alternative
explanations of the origin of the quantum anomalies were suggested; moreover in the second book
it was said that the explanation, given in the �rst book, is wrong. In the talk a new approach to
the analysis of the quantum anomalies will be suggested. It shows that the result of the �rst book
is correct.

Canonical second quantization via generalized measures

Smolyanov O.G., Shamarov N.N.

Lab. of in�nite dimensional analysis and mathematical physics of Faculty of mech. and math.
Lomonosov Moscow State University

Under the standard Hilbert symplectic space we understand the orthogonal sum E = Q⊕ P ∼=
Q×P of the two mutually isomorphic real Hilbert spaces Q and P (each often regarded as a dual to
the another, P ∼= Q′ and vice versa) endowed with the unitary operator I : E′ → E (E′ ∼= P ×Q)
de�ned by I

(
p
q

)
=
(
q
−p
)
. We call the space E(E) of all in�nitely (Hadamard) smooth real functions

on the symplectic space (E, I) the Poisson algebra if it is endowed with the �Poisson braces� bilinear
operation {·, ·} : E(E) × E(E) → E(E) de�ned by {f, g}(z) = f ′(z)(Ig′(z)) where f ′(z) ∈ E′ is the
derivative of f at z ∈ E . We call a function f ∈ E(E) quadratic, if f ′′′ ≡ 0, and we call a subalgebra
of the Poisson algebra non-trivial Poisson subalgebra, if it contains: a) all constants and continuous
linear functionals, b) dense, w.r.t. the topology of the pointwise convergence, subspace of non-linear
quadratic functions and c) in�nite dimensional set of non-quadratic functions.

Under the canonical ~-quantization of a non-trivial Poisson subalgebra A (elements of the algebra
are called the classical observables, and real number ~ > 0 plays here the role of the Planck constant
h divided by 2π) we understand any linear operator ˆ : f 7→ f̂ from the Poisson algebra into the
some complex Lie algebra of self-adjoint operators (acting in some auxiliary complex Hilbert space
H and having common dense invariant subspace D0 ⊂ H in their domains) such that 1̂ψ = ψ and
on the quadratic functions subalgebra A2 = {f ∈ A : f ′′′ ≡ 0} we have the homomorphic �canonical
commutation relations�: i~{̂f, g} = [f̂ , ĝ] ≡ f̂ ĝ − ĝf̂).

We refer to the canonical ~-quantization as to the Schroedinger one if the auxiliary complex
Hilbert space H is a completion of an invariant, w.r.t. all isometric changes of variables, space S(Q)
of smooth complex functions, square-integrable w.r.t. some generalized measure on Q.

If Q is in�nite dimensional, such quantizations are called second quantization.
We construct a Schroedinger canonical second ~-quantization of a non-trivial Poisson subalgebra

A for each real ~ > 0 using in�nite dimensional pseudo-di�erential operators.
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Bifurcations of multiple attractors in a predator-prey system

S�oderbacka G.

�Abo Akademi
gunnar53@mail.ru

This is an update of the presentation from previous conference inculding many questions. The
system of n competing predators feeding on the same prey is of the type

X ′
i = pi φi(S)Xi − diXi, i = 1, ..., n, (1a)

S′ = H(S)−
n∑
i=1

qi φi(S)Xi, (1b)

where the variable S represents the prey and the variables Xi represent the predators. They are, of
course, non-negative. The function φi is assumed non-decreasing.

We consider the case where

H(S) = r S

(
1− S

K

)
, φi(S) =

S

S +Ai
, (2)

and where the parameters r, K and Ai are positive.
The dynamics in the coordinate planes representing one of the predators and the prey is well

known and there is no more than one cycle. The system has no equilibrium, where predators
coexist (in non-degenerate cases). But the predators can coexist in a cyclic and complicated way.
There exists multiple attractors of cyclic and di�erent chaotic chaos including "spiral-like" chaos.
This happens even in cases, where the populations do not become unrealistic low. We present new
discovered phenomena and discuss the possible bifurcations of these and contours from where they
could develop.

References

[1] Osipov A.V., S�oderbacka G. Poincar�e map construction for some classic two predators - one
prey systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg, 27, 1, 1750116, 9 pp, (2017).

[2] Osipov A.V., S�oderbacka G. Review of results on a system of type many predators- one prey.
Nonlinear Systems and Their Remarkable Mathematical Structures, pp 520-540, CRC Press,
2018.

121



Classi�cation of chaotic attractors
in non-autonomous R�ossler system

Stankevich N.V.

Laboratory of Topological Methods in Dynamics
National Research University Higher School of Economics

Problems of control and stabilization of various oscillation modes of nonlinear systems attract
a lot of attention due to both its theoretical value and great practical importance [1-2]. Situations
when external force on the system with unstable mode not only leads to its stabilization, but also
initiates a system of periodic and quasi-periodic modes with the classical system of Arnold's tongues
on the parameter plane of period vs amplitude of the external force are very interesting and attractive
for researchers.

One of the classical object for investigation in nonlinear dynamics is R�ossler system. At certain
parameters the R�ossler system up to the threshold of the saddle-node bifurcation of equilibrium
states demonstrates the mode when phase trajectories go to in�nity. It has been shown in [3-4]
that applying of periodic impulse signal to the system can stabilize oscillations in it and initiate
synchronous response.

In the frame of the present work analysis of the complex dynamics in pulsed forced R�ossler system
is carried out. Using the full spectrum of Lyapunov exponents three types of chaotic dynamics were
classi�ed. Various routs leading to appearance of di�erent type of chaotic attractors are discussed.

The work was supported by the Russian Foundation for Basic Research, project 19-31-60030.
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Analysis of Some Non-Smooth Bifurcations with Applications to Ship Maneuvering

Steinherr M.

Department of Mathematics
University of Bremen

The super/subcriticality of a Hopf bifurcation in a generic smooth 2D system can be readily
determined by the sign of the �rst Lyapunov coe�cient. However, for a system of continuous but
non-smooth equations this cannot be applied in general. We show new results for autonomous
systems of arbitrary �nite dimension with focus on non-smooth nonlinearities of the form |ui|uj .
This is motivated mainly by models for ship maneuvering and its control. We present the unfolding
of Hopf-type bifurcations for such systems and discuss generalizations to bifurcations at switching
points for continuous piecewise smooth systems.
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Algebraic Constructions Generated By Causal Structure Of Space-times

Stolbova V.A.

Department Of Fundamental Sciences
Bauman Moscow State Technical University

General relativity and quantum �eld theory both require systematic approach for working with
families of causal subsets of space-times (su�ce it to mention constructing the causal hierarchy of
space-times, singularity theorems [1] and causal nets of operator algebras [2]). Here we shall con�ne
ourselves to organizing subsets of Minkowski space-times MD

1 into algebraic systems (lattices) and
describing their interrelations.

Let's consider the families of upper and lower cones on Minkowski space-time

+
Con

(
MD

1

)
≡
{
∅, +

con
x

∣∣∣x ∈MD
1 , x · x ≥ 0, x0 ≥ 0

}
,

−
Con

(
MD

1

)
≡
{
∅, −

con
x

∣∣∣x ∈MD
1 , x · x ≥ 0, x0 ≤ 0

}
,

where x · x ≡ ηαβx
αxβ, α, β = 0, D − 1, (ηαβ) ≡ diag (+,−,−, ...,−) .

Now we de�ne binary operations on
+
Con (�addition�

+
∨ and �multiplication�

+
∧) as follows

+
∨ :

+
Con

(
MD

1

)
×

+
Con

(
MD

1

)
→

+
Con

(
MD

1

)(
+
con
x
,

+
con
y

)
7→ +
con
x

+
∨ +
con
y

≡
smallest upper cone,

containing
+
con
x

and
+
con
y

+
∧ :

+
Con

(
MD

1

)
×

+
Con

(
MD

1

)
→

+
Con

(
MD

1

)(
+
con
x
,

+
con
y

)
7→ +
con
x

+
∧ +
con
y

≡ +
con
x

∩ +
con
y

It's easy to identify the properties of idempotency, commutativity, associativity of both operations,
and also the validity of absorption identities

+
con
x

+
∧
(

+
con
x

+
∨ +
con
y

)
=

+
con
x

=
+
con
x

+
∨
(

+
con
x

+
∧ +
con
y

)
∀ x, y ∈MD

1

and conclude that

(
+
Con

(
MD

1

)
,
+
∧,

+
∨
)

is a lattice for which the property of distributivity is also

true. In the same way we establish the distributivity of the lattice

(
−
Con

(
MD

1

)
,
−
∧,

−
∨
)
, where

�multiplication�
−
∧ and �addition�

−
∨ of the lower cones are de�ned as in the previous case. A

bijection between these lattices transforms one cone into another without changing the vertex

T :

(
+
Con

(
MD

1

)
,
+
∧,

+
∨
)

→
(

−
Con

(
MD

1

)
,
−
∨,

−
∧
)

+
con
x

7→ T
(

+
con
x

)
≡ −
con
x

Let's consider the family of diamonds on MD
1

Dmd
(
MD

1

)
≡


y

dmd
x

=
+
con
x

∩ −
con
y

=
+
con
x

∩
T

(
+
con
y

)
=

= T−1
( −
con
x

) ∩ −
con
y

∣∣∣∣∣∣∣x, y ∈MD
1

 ,
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and de�ne �addition� ∨ and �multiplication� ∧ as follows:

∨ : Dmd
(
MD

1

)
×Dmd

(
MD

1

)
→ Dmd

(
MD

1

)(
′y

dmd
′x
,

′′y

dmd
′′x

)
7→

′y

dmd
′x

∨
′′y

dmd
′′x

≡
(

+
con
′x

+
∨ +
con
′′x

) ∩ (
−
con
′y

−
∨ −
con
′′y

)
∧ : Dmd

(
MD

1

)
×Dmd

(
MD

1

)
→ Dmd

(
MD

1

)(
′y

dmd
′x
,

′′y

dmd
′′x

)
7→

′y

dmd
′x

∧
′′y

dmd
′′x

≡
(

+
con
′x

+
∧ +
con
′′x

) ∩ (
−
con
′y

−
∧ −
con
′′y

)
The properties of �addition� and �multiplication� on cones allow extracting the properties of op-
erations on double cones. These causal subsets of the Minkowski spacetime, partially ordered by
inclusion ⊇, are directed sets, what makes them potentially interesting as a start when constructing
the nets of C∗−algebras.
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Complicated dynamics in a reversible Hamiltonian system
near a symmetric heteroclinic contour

K.N. Trifonov, L.M. Lerman

Lobachevsky State University of Nizhny Novgorod
lermanl@mm.unn.ru

Hamiltonian systems arise as mathematical models in many branches of physics, chemistry,
engineering. Such systems as their study shows have usually a rather complicated structure that leads
to great di�culties in their examination. Therefore one of the fruitful method of their investigation
is the study of the orbit behavior near some speci�c structures which can be distinguished by
simple conditions. The study of a system near a homoclinic orbits or contours made up of several
heteroclinic orbits and equilibria or periodic orbits is undoubtedly one of such problem.

We study the dynamics of an analytic reversible Hamiltonian system XH with two degrees
of freedom assuming the system has a heteroclinic contour involving a symmetric saddle-center
equilibrium p (its eigenvalues are nonzero numbers ±iω, ±λ, ω, λ ∈ R), an orientable symmetric
saddle periodic orbit γ lying in the same level of Hamiltonian H = H(p) and two nonsymmetric
heteroclinic orbits Γ1,Γ2 joining p with γ and interchanged by the involution L, Γ2 = L(Γ1). The
reversible involution L is supposed to have a smooth two-dimensional set Fix(L) of its �xed points.
Such a system are met in generic one-parameter families of reversible Hamiltonian systems.

Saddle periodic orbit γ belongs to a 1-parameter family γc of saddle periodic orbits in all close
levels H = c forming a symplectic cylinder. Reversible Hamiltonian systems possessing the above
mentioned contour can be of two di�erent types in dependence on how the involution acts locally
near a saddle-center.

Our results demonstrate the existence in such a system:
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• countable set of transverse 1-round homoclinic orbits to γ and related to them non-uniformly
hyperbolic subsets;

• appearance for c > 0 of two transverse heteroclinic contours involving γc, a small Lyapunov
periodic orbit lc near p and four heteroclinic orbits Γ

±
1 and Γ±

2 = L(Γ±
1 ) and related with them

uniform hyperbolic subsets;

• a �nite set of transverse 1-round homoclinic orbits to γc for | c | close to H(p) and uniformly
hyperbolic sets related with them;

• a countable set of values cn < 0 accumulating at c = 0 such that on the level H = cn the
system has a tangent homoclinic orbit to γcn and bifurcations nearby orbits related to this
tangency;

• countable sets of saddle and elliptic periodic orbits.

Some other bifurcation phenomena will be discussed when generic one parameter reversible unfold-
ings of such a system are considered.

This work was supported by the Russian Foundation of Basic Research under the grant 18-29-
10081.

Fast convergent Cherno� approximations to the solution of
heat equation with variable coe�cient of thermal conductivity

Vedenin A.V

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

The research presented is devoted to C0-semigroups and their approximations. C0-semigroup is
an operator-valued function which enjoys a number of properties, see the textbook [1].

C0-semigroups have many useful applications. One of them is that they provide solutions for a
certain class of linear parabolic partial di�erential equations. Accordingly, approximations to the
C0-semigroup will be approximations to the solution of these equations. The Cherno� operator-
valued function is an object that forms a sequence converging to the C0-semigroup. The question
arises in article [2]: with what speed does this sequence converge and on what conditions does this
speed depend. The result presented in the talk is one of the �rst contributions to the �eld of studies
of the convergence rate of Cherno� approximations.

In the research presented, a heat equation with variable thermal conductivity coe�cient is con-
sidered; this equation is a particular case of a parabolic di�erential equation. The author of the
talk applies the conditions of the Remizov's conjecture [3], according to which the approximations
converge faster. It seems that we have reasons to hope that methods presented can be applied to a
wider class of equations.
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Hopf bifurcation and stability of whirl and whip in rotor systems
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Rotors of high-speed turbo machines are commonly supported by hydrodynamic journal bearings.
Many authors wrote about an e�ect of self-oscillations for this class of bearings, which in this
context are usually referred as "oil whirl" and "oil whip". This e�ect has been extensively studied
experimentally as well as analytically [1-10]. At the center position of the rotor loses its stability and
a stable limit-cycle appears (oil whirl). The stability loss of the equilibrium position of a rigid rotor
at the speed has been widely investigated both analytically and numerically by many authors [1, 6,
7-10]. In this paper we consider the problem of stability/instability e�ect oil whirl in the motion of
the rotor in the �uid. The instability problem of rotor/seal system has been extensively analyzed
by the linearization of model around the equilibrium position of the rotor. Such authors as [1, 5, 6,
7, 8, 9] wrote, that this method is not useful, since the nature of the whirling motion after onset of
instability cannot be analyzed using only the linearized model. Non-linear analysis of the problem
is very di�cult [1, 6, 7, 9]. An analysis of the self-excited oscillations of a rotor is presented. We
consider a symmetric Je�cott rotor mounted at both rigid ends . The seal �uid force is assumed
to be acting on the disk of the shaft [1, 2, 3, 10]. It is shown that Hopf bifurcation theory may be
used to investigate small-amplitude periodic solutions of the nonlinear equations of motion for rotor
speeds.
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Local and Global Inverse Problems for Di�erence Equations

Vyugin I.V.
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NRU HSE, IITP RAS, Moscow, Russia

vyugin@gmail.com

We present the new proof of the local inverse problem for systems of linear di�erence equations in
the neighborhood of the in�nity. This proof is based on almost complex structures. Using solution of
the local problem we apply holomorphic vector bundles with meromorphic additive shift to studying
of generalized Riemann�Hilbert�Birkho� problem for di�erence systems.

As the application of this approach we obtain a generalization of Birkho�'s existence theorem.
We prove that for any admissible set of characteristic constants and monodromy there exists a system

Y (z + 1) = A(z)Y (z), (1)

which has the given monodromy and characteristic constants and rational matrix A(z).

An unguided tour started from chirality

Wang S.C.

Department of Mathematics
Peking University

We will survey an unguided mathematical tour of research by topologists at Peking University
and their collaborators over many years. The tour starts with work on chirality and, drawn by
questions related to attractors, goes via a zigzag path across topology and dynamics.
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Regularity of attractors of transversally similar Riemannian foliations

Zhukova N.I.

Laboratory of topological methods in dynamics
National Research University Higher School of Economics

Recall that a transformation f ∈ Diff(N) of a q-dimensional Riemannian manifold (N, g) is
called a similarity if f∗g = λg where λ is a positive constant. The set of all similarities of a
Riemannian manifold (N, g) forms the Lie group Sim(N, g). A foliation (M,F ) of a codimension q
on n-dimensional manifoldM , where 0 < q < n, is called a transversally similar Riemannian foliation
if the transformations of foliated transversal coordinates are local similarities of some q-dimensional
Riemannian manifold (N, g) whose connectivity is not assumed.

A subset of a manifold M is said to be saturated if it is a union of leaves of the foliation (M,F ).
A closed saturated nonempty subset M of M for which there exists an open neighborhood U such
that the closure of every leaf from U \M contains M, is called an attractor of this foliation. The
neighborhood U is de�ned by the above condition, is called the basin of the attractor M and is
denoted by Attr(M). If, moreover, Attr(M) =M, then the attractor M is called global.

An attractor M of a foliation (M,F ) is called regular if it is a smooth submanifold of M. Recall
that a minimal set of a foliation (M,F ) is referred to as a nonempty closed saturated subset K of
M such that every leaf belonging to K is dense in K.

Minimal sets and attractors of foliations (M,F ) largely determine the topology of (M,F ). There-
fore, the investigation of the existence and the structure of minimal sets and attractors is one of the
main problems of both topological dynamics and qualitative theory of foliations. Attractors that
are minimal sets of conformal and Weyl foliations were investigated, in particular, in [1], [2] and [3].

The purpose of this work is to describe the structure of global attractors of transversally similar
Riemann foliations of an arbitrary codimension on n-dimensional manifolds. The following statement
is one of the main results of this work.

Theorem Every complete transversally similar Riemannian foliation (M,F ), which is not Rie-
mannian, has a regular global attractor.

The application of this theorem made it possible to describe the global structure of such foliations.
In particular, it is proved that transversally similar non-Riemannian foliations exist only on non-
compact manifolds. Also, the leaf closures are not submanifolds ofM , in general. A leaf of a foliation
(M,F ) is called proper if it is an embedded submanifold of M . A foliation (M,F ) is referred to as
proper if all its leaves are proper. In the case where (M,F ) is a proper non-Riemannian transversally
similar Riemannian foliation, its global attractor is a closed leaf.

Examples are constructed.
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