Change of variables in an integral over a manifold

Author:
Anna Smirnova, Fernanda Florido Calvo
Sciencific advisor:
I.D. Remizov, Ph.D.

November 25, 2021

We observe a system

$$
\begin{gathered}
\frac{d \gamma_{x, A_{j}}(t)}{d t}=A_{j}\left(\gamma_{x, A_{j}}(t)\right) \\
\gamma_{x, A_{j}}(0)=x
\end{gathered}
$$

Denote by $X_{j}(t)$ the vector field induced by the field $A_{j}\left(\gamma_{x, A_{j}}(t)\right)$, for every $t \in[a, b]$ vector $X(t) \in T_{\gamma(t)} M$ exists and $X(t)=\dot{\gamma}(t)$ in local coordinates. Operator $\gamma=\gamma_{x, A_{j}}(t):[a, b] \rightarrow M$ maps a segment onto a manifold M , where M is a smooth, connected manifold with bounded geometry of dimension n .

Let the set $\gamma * V$ be a set of all smooth vector fields among a curve γ and let the connectivity ∇ be defined on M, it means that $\nabla: V(M) \times V(M) \rightarrow V(M):(X, Y) \rightarrow \nabla_{X} Y$. Then for every γ uniquely defined an operator $\frac{D}{d t}: \gamma * V \rightarrow \gamma * V$ such that:

1) $\frac{D(X+Y)}{d t}=\frac{D X}{d t}+\frac{D Y}{d t}$;
2) if $\mathrm{f}(\mathrm{t})$ is a smooth function on $[a, b]$ then $\frac{D(f X)}{d t}=\frac{d f}{d t} X+f \frac{D X}{d t}$;
3) if $X(t)=Y(\gamma(t))$ then $\frac{D X}{d t}=\nabla_{\dot{\gamma}} Y=\nabla_{X} Y$.

The operator $\frac{D X}{d t}$ is called absolute derivative of vector field X among γ. If $\frac{D X}{d t}=0$ i.e. $\frac{d X^{j}}{d t}+\Gamma_{i k}^{j} \dot{\gamma}^{i} X^{k}=0$. As is known, a solution to the Cauchy problem for such a system exists and is unique. That is why for every $t_{0} \in[a, b]$ and for every $X_{0} \in T_{\gamma\left(t_{0}\right)} M$ the vector field $\mathrm{X}(\mathrm{t})$ among the curve $\gamma:[a, b] \rightarrow M$ uniquely exists if $X\left(t_{0}\right)=X_{0}$ and called parallel field among a curve γ.

Let points $\mathrm{p}, \mathrm{q} \in M$ be connected by a curve $\gamma:[a, b] \rightarrow M$ such that $p=\gamma(a)$ and $q=\gamma(b)$. Let us define a shift operator $\tau_{\gamma}: T_{p} M \rightarrow T_{q} M$ satisfying the conditions $X(a)=X_{0}$ and $\tau_{\gamma}\left(X_{0}\right)=X(b)$.

Theorem

Shift operator τ_{γ} is a diffeomorphism of vector fields.

Proof.

Firstly, let us prove that τ_{γ} is a isomorphism.
Let $\tau_{\gamma}\left(X_{0}\right)=0$ for $X_{0} \in T_{p} M$ then $X(b)=0$ consequently $X(t)=0$ for all t due to uniqueness of solution to the Cauchy problem. So τ_{γ} is a linear injective mapping between vector spaces of the same dimension and that is why τ_{γ} is a isomorphism.
Since we are considering an isomorphism of smooth vector fields, then by definition, our mapping τ_{γ} is a diffeomorphism.

Let M be an orientable smooth manifold of dimension n. Orientability of M means that the oriented atlas $A(M)$ is chosen from its smooth structure. Moreover for each $(U, \varphi),(V, \psi) \in A(M)$ such as $U \cap V \neq \emptyset$ transition function $y=\psi \circ \varphi^{-1}(x)$ everywhere on $\varphi(U \cap V)$ satisfies to inequality $\operatorname{det}\left(\frac{\partial y}{\partial x}\right)>0$.

Definition of a tensor

Let M be a smooth manifold, $a \in M, T_{a} M$ is the tangent space to M at point a, and $T_{a}^{*} M$ is the cotangent space. Consider numbers $p, q \in \mathbb{Z}, p, q \geq 0$. A mapping $L:\left(T_{a}^{*} M\right)^{p} \times\left(T_{a} M\right)^{q} \mathbb{R}$ linear in each argument is called a tensor of type (p, q) of the space $T_{a} M$.

Definition of a polylinear form

Mapping $\omega:\left(T_{a}(M)\right)^{q} \mathbb{R}$ linear in each argument is called q-linear or polylinear form on $T_{a} M$. Polylinear form is a tensor of type $(0, q)$ i.e. $\omega \in T_{q}^{0}\left(T_{a} M\right)$.
Let us observe symmetric group S_{q} consisting of all bijections $\sigma:\{1, \ldots, q\} \rightarrow\{1, \ldots, q\}$. Composition of mappings is used as a group operation on S_{q}. For each element $\sigma \in S_{q}$, put $\operatorname{sgn}(\sigma)=1$ if the substitution is even and $\operatorname{sgn}(\sigma)=-1$ otherwise.

Definition of an exterior form

Let ω be a q-linear form on $T_{a} M$ and

$$
\omega\left(X_{\sigma(1)}, \ldots, X_{\sigma(q)}\right)=\operatorname{sgn}(\sigma) \omega\left(X_{1}, \ldots, X_{q}\right)
$$

for all $X_{1}, \ldots, X_{q} \in T_{a} M$ and $\sigma \in S_{q}$. In this case ω is called an exterior form of degree q on $T_{a} M$. The set of all exterior q -forms on $T_{a} M$ is denoted by $\Lambda^{q}\left(T_{a} M\right)$.
It is easy to notice that $\Lambda^{q}\left(T_{a} M\right)$ is a subspace of vector space $T_{q}^{0}\left(T_{a} M\right)$.

We denote by $\Lambda^{q}(M)$ a set of differential exterior forms of degree q on $\mathrm{M} . \Lambda^{q}(M)$ is vector space over the field \mathbb{R} and module over the ring of smooth functions $F(M)$.

Definition of a volume form

Let g be a Riemannian metric on M , then there is a positive definite and a symmetric tensor field of type $(0,2)$. This metric g defines a volume form $\Omega \in \Lambda^{n}(M)$ that does not vanish anywhere and in each chart $(U, \varphi) \in A(M)$ has the form

$$
\Omega=\sqrt{\operatorname{det}\left(g_{i j}\right)} d \varphi^{1} \wedge \cdots \wedge d \varphi^{n}
$$

where $\left(g_{i j}\right)$ is a matrix composed of the components of the tensor field g in the $\operatorname{map}(U, \varphi)$.

Definition of differential of mapping

Let $f: M \rightarrow \mathbb{R}$ be a smooth function, $a \in M$ and $b=f(a)$. Then $T_{b} \mathbb{R}=\mathbb{R}$. That is why a differential of mapping f at point a is called linear mapping $d f_{a}: T_{a} M \rightarrow \mathbb{R}$. By $d f$ we denote exterior form on M .

Definition of codifferential of diffeomorphism

Let us observe smooth vector field A on M. If it is complete then it generates an one-parametric group of diffeomorphisms $\alpha_{t}: M \rightarrow M, t \in \mathbb{R}$. For all $a \in M$ we have

$$
\frac{d \alpha_{t}(a)}{d t}=A\left(\alpha_{t}(a)\right)
$$

Put $b=\alpha_{t}(a)$ and

$$
\left(\alpha_{t}^{*} \Omega\right)_{a}=\left(\alpha_{t}^{*}\right)_{b}\left(\Omega_{b}\right),
$$

where $\left(\alpha_{t}^{*}\right)_{b}: \Lambda^{q}\left(T_{b} M\right) \rightarrow \Lambda^{q}\left(T_{a} M\right)$ is a codifferential of diffeomorphism α_{t} at point b.

The codifferential is the adjoint of the exterior derivative. By the way forms $\left(\alpha_{t}^{*} \Omega\right)_{a} \in \Lambda^{n}\left(T_{a} M\right)$ and $\alpha_{t}^{*} \Omega \in \Lambda^{n}(M)$ are defined. It is known that $\operatorname{dim} \Lambda^{n}\left(T_{a} M\right)=1$ and $\Omega \neq 0$ so there is a number $J_{t}(a) \in \mathbb{R}$ such that

$$
\left(\alpha_{t}^{*} \Omega\right)_{a}=J_{t}(a) \Omega_{a}
$$

So we define a family of smooth functions $J_{t}: M \rightarrow \mathbb{R}$ smoothly depending on a parameter $t \in \mathbb{R}$. It is natural to call the function J_{t} the Jacobian of the diffeomorphism α_{t} with respect to the volume form Ω.

Lemma 1. We have an equation

$$
\begin{equation*}
J_{t}=1+t d i v A+o(t) \tag{1}
\end{equation*}
$$

Proof. By construction of Jacobian we have

$$
\alpha_{t}^{*} \Omega=J_{t} \Omega
$$

Differentiating the last equality with respect to t, we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(\alpha_{t}^{*} \Omega\right)=\frac{d J_{t}}{d t} \Omega \tag{2}
\end{equation*}
$$

By definition of Lie derivative of the tensor field Ω in the direction of the vector field A we have

$$
\begin{equation*}
\left.\frac{d}{d t}\left(\alpha_{t}^{*} \Omega\right)\right|_{t=0}=L_{A} \Omega \tag{3}
\end{equation*}
$$

On the other hand, by definition of the divergence of vector field A

$$
\begin{equation*}
L_{A} \Omega=(\operatorname{divA}) \Omega \tag{4}
\end{equation*}
$$

Consequently

$$
(\operatorname{div} A) \Omega=\left(\left.\frac{d J_{t}}{d t}\right|_{t=0}\right) \Omega,
$$

it means that

$$
\begin{equation*}
\operatorname{div} A=\left.\frac{d J_{t}}{d t}\right|_{t=0} \tag{5}
\end{equation*}
$$

Since $\alpha_{0}=i d_{M}$ and for all $a \in M$ we have $b=\alpha_{0}(a)=a$, then $\alpha_{0}^{*}=i d_{\Lambda^{n}(M)}$ i.e. $\alpha_{0}^{*} \Omega=\Omega$. According to the definition of the Jacobian, this is means that $J_{0}=1$. Substituting the last equality and (5) into the Taylor formula for the function $J: t \rightarrow J_{t}$, we obtain (1).
Lemma 2. For all $a \in M$ and $t \in \mathbb{R}$ we have

$$
\begin{equation*}
J_{t}(a)=\exp \left(\int_{0}^{t} \operatorname{divA}\left(\alpha_{s}^{*}(a)\right) d s\right) . \tag{6}
\end{equation*}
$$

Proof. By construction of Jacobian for all $t, s \in \mathbb{R}$ we have

$$
\begin{equation*}
\alpha_{t+s}^{*} \Omega=J_{t+s} \Omega \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{d J_{t+s}}{d s}\right|_{s=0}=\frac{d J_{t}}{d t} \tag{8}
\end{equation*}
$$

On the other hand $\alpha_{t+s}=\alpha_{t} \circ \alpha_{s}$ so $\alpha_{t+s}^{*} \Omega=\alpha_{s}^{*}\left(\alpha_{t}^{*} \Omega\right)$. That is why

$$
\left.\frac{d}{d s}\left(\alpha_{t+s}^{*} \Omega\right)\right|_{s=0}=\left.\frac{d}{d s}\left(\alpha_{s}^{*}\left(\alpha_{t}^{*} \Omega\right)\right)\right|_{s=0}=L_{A}\left(\alpha_{t}^{*} \Omega\right)
$$

where $L_{A}\left(\alpha_{t}^{*} \Omega\right)$ is the Lie derivative of form $\alpha_{t}^{*} \Omega$ in the direction of the vector field A. But $L_{A}\left(\alpha_{t}^{*} \Omega\right)=\alpha_{t}^{*}\left(L_{A} \Omega\right)$, from $(4,7,8)$

$$
\left.\frac{d}{d s}\left(\alpha_{t+s}^{*} \Omega\right)\right|_{s=0}=\alpha_{t}^{*}\left(L_{A} \Omega\right)=\alpha_{t}^{*}((\operatorname{div} A) \Omega)
$$

Since $\alpha_{t}^{*}((\operatorname{div} A) \Omega)=\left(\operatorname{div} A \circ \alpha_{t}\right) \alpha_{t}^{*} \Omega$ then

$$
\begin{equation*}
\left.\frac{d}{d s}\left(\alpha_{t+s}^{*} \Omega\right)\right|_{s=0}=\left(d i v A \circ \alpha_{t}\right) \alpha_{t}^{*} \Omega=\left(d i v A \circ \alpha_{t}\right) J_{t} \Omega \tag{9}
\end{equation*}
$$

Now we differentiate (7) with respect to s and substitute into the resulting equality $s=0$. Then, by virtue of (8) and (9), for any point $a \in M$, we obtain

$$
\operatorname{divA}\left(\alpha_{t}(a)\right) J_{t} \Omega_{a}=\frac{d J_{t}(a)}{d t} \Omega_{a}
$$

Since $\Omega_{a} \neq 0$, this implies

$$
\begin{equation*}
\frac{d J_{t}(a)}{d t}=\operatorname{div} A\left(\alpha_{t}(a)\right) J_{t}(a) \tag{10}
\end{equation*}
$$

Obviously, (6) is a solution to the differential equation (10) with the initial condition $J_{0}(a)=1$.

