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We observe a system

dγx,Aj(t)
dt

= Aj(γx,Aj(t));

γx,Aj(0) = x.

Denote by Xj(t) the vector field induced by the field Aj(γx,Aj(t)), for
every t ∈ [a, b] vector X(t) ∈ Tγ(t)M exists and X(t) = γ̇(t) in local
coordinates. Operator γ = γx,Aj(t) : [a, b] → M maps a segment onto a
manifold M, where M is a smooth, connected manifold with bounded
geometry of dimension n.

A. Smirnova, F. F. Calvo Change of variables November 25, 2021 2 / 18



Let the set γ ∗ V be a set of all smooth vector fields among a curve γ
and let the connectivity ∇ be defined on M, it means that
∇ : V(M)× V(M) → V(M) : (X,Y) → ∇XY. Then for every γ uniquely
defined an operator D

dt : γ ∗ V → γ ∗ V such that:
1) D(X+Y)

dt = DX
dt + DY

dt ;

2) if f(t) is a smooth function on [a, b] then D(fX)
dt = df

dt X + f DX
dt ;

3) if X(t) = Y(γ(t)) then DX
dt = ∇γ̇Y = ∇XY.
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The operator DX
dt is called absolute derivative of vector field X among γ.

If DX
dt = 0 i.e. dXj

dt + Γj
ikγ̇

iXk = 0. As is known, a solution to the Cauchy
problem for such a system exists and is unique. That is why for every
t0 ∈ [a, b] and for every X0 ∈ Tγ(t0)M the vector field X(t) among the
curve γ : [a, b] → M uniquely exists if X(t0) = X0 and called parallel field
among a curve γ.
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Let points p,q ∈ M be connected by a curve γ : [a, b] → M such that
p = γ(a) and q = γ(b). Let us define a shift operator τγ : TpM → TqM
satisfying the conditions X(a) = X0 and τγ(X0) = X(b).

Theorem
Shift operator τγ is a diffeomorphism of vector fields.

Proof.
Firstly, let us prove that τγ is a isomorphism.
Let τγ(X0) = 0 for X0 ∈ TpM then X(b) = 0 consequently X(t) = 0 for all
t due to uniqueness of solution to the Cauchy problem. So τγ is a
linear injective mapping between vector spaces of the same dimension
and that is why τγ is a isomorphism.
Since we are considering an isomorphism of smooth vector fields, then
by definition, our mapping τγ is a diffeomorphism.
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Let M be an orientable smooth manifold of dimension n. Orientability of
M means that the oriented atlas A(M) is chosen from its smooth
structure. Moreover for each (U, φ), (V, ψ) ∈ A(M) such as U ∩ V ̸= ∅
transition function y = ψ ◦ φ−1(x) everywhere on φ(U ∩ V) satisfies to
inequality det

(
∂y
∂x

)
> 0.

A. Smirnova, F. F. Calvo Change of variables November 25, 2021 6 / 18



Definition of a tensor
Let M be a smooth manifold, a ∈ M, TaM is the tangent space to M at
point a, and T∗

a M is the cotangent space. Consider numbers
p, q ∈ Z, p, q ≥ 0. A mapping L : (T∗

a M)p × (TaM)qR linear in each
argument is called a tensor of type (p, q) of the space TaM.
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Definition of a polylinear form
Mapping ω : (Ta(M))qR linear in each argument is called q-linear or
polylinear form on TaM. Polylinear form is a tensor of type (0, q) i.e.
ω ∈ T0

q (TaM).
Let us observe symmetric group Sq consisting of all bijections
σ : {1, . . . , q} → {1, . . . , q}. Composition of mappings is used as a
group operation on Sq. For each element σ ∈ Sq, put sgn(σ) = 1 if the
substitution is even and sgn(σ) = −1 otherwise.
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Definition of an exterior form
Let ω be a q-linear form on TaM and

ω(Xσ(1), . . . ,Xσ(q)) = sgn(σ)ω(X1, . . . ,Xq)

for all X1, . . . ,Xq ∈ TaM and σ ∈ Sq. In this case ω is called an exterior
form of degree q on TaM. The set of all exterior q-forms on TaM is
denoted by Λq(TaM).
It is easy to notice that Λq(TaM) is a subspace of vector space
T0

q (TaM).
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We denote by Λq(M) a set of differential exterior forms of degree q on
M. Λq(M) is vector space over the field R and module over the ring of
smooth functions F(M).
Definition of a volume form
Let g be a Riemannian metric on M, then there is a positive definite
and a symmetric tensor field of type (0,2). This metric g defines a
volume form Ω ∈ Λn(M) that does not vanish anywhere and in each
chart (U, φ) ∈ A(M) has the form

Ω =
√

det(gij)dφ1 ∧ · · · ∧ dφn,

where (gij) is a matrix composed of the components of the tensor field
g in the map (U, φ).
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Definition of differential of mapping
Let f : M → R be a smooth function, a ∈ M and b = f (a). Then
TbR = R. That is why a differential of mapping f at point a is called
linear mapping dfa : TaM → R. By df we denote exterior form on M.
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Definition of codifferential of diffeomorphism
Let us observe smooth vector field A on M. If it is complete then it
generates an one-parametric group of diffeomorphisms
αt : M → M, t ∈ R. For all a ∈ M we have

dαt(a)
dt

= A(αt(a)).

Put b = αt(a) and
(α∗

t Ω)a = (α∗
t )b(Ωb),

where (α∗
t )b : Λ

q(TbM) → Λq(TaM) is a codifferential of diffeomorphism
αt at point b.
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The codifferential is the adjoint of the exterior derivative.
By the way forms (α∗

t Ω)a ∈ Λn(TaM) and α∗
t Ω ∈ Λn(M) are defined. It is

known that dimΛn(TaM) = 1 and Ω ̸= 0 so there is a number Jt(a) ∈ R
such that

(α∗
t Ω)a = Jt(a)Ωa.

So we define a family of smooth functions Jt : M → R smoothly
depending on a parameter t ∈ R. It is natural to call the function Jt the
Jacobian of the diffeomorphism αt with respect to the volume form Ω.
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Lemma 1. We have an equation

Jt = 1 + tdivA + o(t) (1)

Proof. By construction of Jacobian we have

α∗
t Ω = JtΩ.

Differentiating the last equality with respect to t, we obtain

d
dt
(α∗

t Ω) =
dJt

dt
Ω. (2)

By definition of Lie derivative of the tensor field Ω in the direction of the
vector field A we have

d
dt
(α∗

t Ω)|t=0 = LAΩ. (3)

On the other hand, by definition of the divergence of vector field A

LAΩ = (divA)Ω. (4)
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Consequently

(divA)Ω =

(
dJt

dt

∣∣∣∣
t=0

)
Ω,

it means that

divA =
dJt

dt

∣∣∣∣
t=0

. (5)
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Since α0 = idM and for all a ∈ M we have b = α0(a) = a, then
α∗

0 = idΛn(M) i.e. α∗
0Ω = Ω. According to the definition of the Jacobian,

this is means that J0 = 1. Substituting the last equality and (5) into the
Taylor formula for the function J : t → Jt, we obtain (1).
Lemma 2. For all a ∈ M and t ∈ R we have

Jt(a) = exp
(∫ t

0
divA(α∗

s (a))ds
)
. (6)

Proof. By construction of Jacobian for all t, s ∈ R we have

α∗
t+sΩ = Jt+sΩ (7)

and
dJt+s

ds

∣∣∣∣
s=0

=
dJt

dt
. (8)
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On the other hand αt+s = αt ◦ αs so α∗
t+sΩ = α∗

s (α
∗
t Ω). That is why

d
ds
(α∗

t+sΩ)

∣∣∣∣
s=0

=
d
ds
(α∗

s (α
∗
t Ω))

∣∣∣∣
s=0

= LA(α
∗
t Ω),

where LA(α
∗
t Ω) is the Lie derivative of form α∗

t Ω in the direction of the
vector field A. But LA(α

∗
t Ω) = α∗

t (LAΩ), from (4,7,8)

d
ds
(α∗

t+sΩ)

∣∣∣∣
s=0

= α∗
t (LAΩ) = α∗

t ((divA)Ω).
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Since α∗
t ((divA)Ω) = (divA ◦ αt)α

∗
t Ω then

d
ds
(α∗

t+sΩ)

∣∣∣∣
s=0

= (divA ◦ αt)α
∗
t Ω = (divA ◦ αt)JtΩ. (9)

Now we differentiate (7) with respect to s and substitute into the
resulting equality s = 0. Then, by virtue of (8) and (9), for any point
a ∈ M, we obtain

divA(αt(a))JtΩa =
dJt(a)

dt
Ωa.

Since Ωa ̸= 0, this implies

dJt(a)
dt

= divA(αt(a))Jt(a). (10)

Obviously, (6) is a solution to the differential equation (10) with the
initial condition J0(a) = 1.
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