
Examples of examination problems 
 

1. For what values of parameter ‘a’ the system of linear equations has a unique solution in positive 
natural numbers (x = 1, 2, …)? Find this solution for all feasible values of ‘a’. 

x1 + ax2 = 3
x1 + 2x2 = 3
⎧
⎨
⎩

 

Solution: 

Determinant of this system is equal to: 

detA =
1 a
1 2

= 2− a  

Let us consider two cases: det A = 0 and det A ≠ 0: 

I. det A = 2 – a = 0   =>   a = 2 

x1 + 2x2 = 3
x1 + 2x2 = 3
⎧
⎨
⎩

⇔
x1 = 3− 2x2 ≥1
x2 ≥1
⎧
⎨
⎩

⇔

x1 = 3− 2x2
x2 ≤1
x2 ≥1

⎧

⎨
⎪

⎩
⎪

⇔
x1 =1
x2 =1
⎧
⎨
⎩

 

This is a unique solution in positive natural numbers. 

II. det A = 2 – a ≠ 0   =>   a ≠ 2 
Using Gauss method we get zeroes under the main diagonal: 

1 a 3
1 2 3

⎛

⎝
⎜

⎞

⎠
⎟ ~ 1 a 3

0 2− a 0

⎛

⎝
⎜

⎞

⎠
⎟  

x1 + ax2 = 3
2− a( ) x2 = 0

⎧
⎨
⎪

⎩⎪
⇔

x1 = 3
x2 = 0
⎧
⎨
⎩

 

This is a unique solution, but it is not positive. 

Answer: the system has a unique solution in positive natural numbers only for a = 2, this solution is x1 = 1, 
x2 = 1. 

Wrong solution: 

x1 + ax2 = 3
x1 + 2x2 = 3
⎧
⎨
⎩

⇔
x1 = 3− ax2
3− ax2 + 2x2 = 3
⎧
⎨
⎩

⇔
x1 = 3− ax2
2− a( ) x2 = 0

⎧
⎨
⎪

⎩⎪
⇔

x1 = 3
x2 = 0
⎧
⎨
⎩

 

Wrong answer 1: For any ‘a’ value we have a unique solution in natural numbers. 
Wrong answer 2: This is not a positive solution, so there no such values of ‘a’, for which the system has a 
solution in positive natural numbers. 
 

2. Independent random variables X and Y have the following distributions: 

X ~ 0 1
1 3 2 3

, Y ~ 0 1 2
1 3 1 3 1 3

 

Find the expectation and dispersion of the random variable Z = (Y – X)2. 

Solution 1: 



Ε Y[ ] =1 3+ 2 3=1, Ε Y 2⎡⎣ ⎤⎦=1 3+ 4 3= 5 3, Ε Y 3⎡⎣ ⎤⎦=1 3+8 3= 3, Ε Y 4⎡⎣ ⎤⎦=1 3+16 3=17 3

Ε X[ ] = 2 3, Ε X 2⎡⎣ ⎤⎦= 2 3, Ε X 3⎡⎣ ⎤⎦= 2 3, Ε X 4⎡⎣ ⎤⎦= 2 3
 

Ε Y − X( )2⎡
⎣

⎤
⎦= Ε Y 2 − 2YX + X 2⎡⎣ ⎤⎦= Ε Y 2⎡⎣ ⎤⎦− 2Ε Y[ ]Ε X[ ]+Ε X 2⎡⎣ ⎤⎦

Ε Y − X( )2⎡
⎣

⎤
⎦= 5 3− 2 ⋅1⋅2 3+ 2 3=1

 

D Y − X( )2⎡
⎣

⎤
⎦= Ε Y − X( )4⎡

⎣
⎤
⎦− Ε Y − X( )2⎡

⎣
⎤
⎦( )
2
= Ε Y 4 − 4Y 3X + 6Y 2X 2 − 4YX 3 + X 4⎡⎣ ⎤⎦− Ε Y − X( )2⎡

⎣
⎤
⎦( )
2

D Y − X( )2⎡
⎣

⎤
⎦= 17 3− 4 ⋅3⋅2 3+ 6 ⋅5 3⋅2 3− 4 ⋅1⋅2 3+ 2 3( )−1= 7 3−1= 4 3

 

Solution 2: 
Let us find Z values for all possible combinations of X and Y and their probabilities P: 

Z = Y − X( )2 P

X \ Y 0 1 2
0 0 1 4
1 1 0 1

,
X \ Y 0 1 2
0 1 9 1 9 1 9
1 2 9 2 9 2 9

 

From this we get the distribution for Z, its expectation, and dispersion: 

Z ~ 0 1 4
1 3 5 9 1 9

, Ε Z[ ] = 5 9+ 4 9 =1, D Z[ ] = Ε Z 2⎡⎣ ⎤⎦− Ε Z[ ]( )
2
= 5 9+16 9−1= 4 3  

Wrong solution 1: 

Ε Y[ ] =1 3+ 2 3=1, Ε X[ ] = 2 3

Ε Y − X( )2⎡
⎣

⎤
⎦= Ε Y − X[ ] ⋅ Ε Y − X[ ] = Ε Y[ ]− Ε X[ ]( ) Ε Y[ ]− Ε X[ ]( ) = 1− 2 3( ) 1− 2 3( ) =1 9

 

D Y[ ] = Ε Y 2⎡⎣ ⎤⎦− Ε Y[ ]( )
2
=1 3+ 4 3−1= 2 3, D X[ ] = Ε X 2⎡⎣ ⎤⎦− Ε X[ ]( )

2
= 2 3− 4 9 = 2 9

D Y − X( )2⎡
⎣

⎤
⎦=D Y − X[ ] ⋅D Y − X[ ] = D Y[ ]−D X[ ]( ) D Y[ ]−D X[ ]( )

D Y − X( )2⎡
⎣

⎤
⎦= 2 3− 2 9( ) 2 3− 2 9( ) =16 81

 

Wrong solution 2: 

D Y − X( )2⎡
⎣

⎤
⎦=D Y 2 − 2YX + X 2⎡⎣ ⎤⎦=D Y 2⎡⎣ ⎤⎦+ 4D Y[ ]D X[ ]+D X 2⎡⎣ ⎤⎦  

 

In the following problems it is necessary to suggest the most efficient algorithms. Full points are given for 
the most efficient algorithm having the lowest computational complexity. The lower the efficiency of the 
suggested solution, the lower are the points. Например, в последних 2 задачах полный балл ставится за 
алгоритм со сложностью O(n), средний балл - за O(nlogn) и низший балл за O(n^2). 

 
3. Write a pseudo-code (or code on any programming language) of an algorithm, which finds two 
elements in an array of integer numbers (positive and negative), such that the product of these 
elements is maximal. Determine the computational complexity of your algorithm. 

Solution: 
Bad: 



get_elements_with_max_product(array): 
max, elem1, elem2 = -inf, 0, 0 

for i = 0, …, |array| - 1 
for j = i+1, …, |array| - 1 

if array[i] * array[j] > max 
max, elem1, elem2 = array[i] * array[j], array[i], array[j] 

return elem1, elem2 
The computational complexity of this solution is O(n2), because there are two nested loops with O(n) 
iterations. More precisely we have n + n-1 + … + 1 = n(n+1)/2 operations. Here n is the size of the array. 
Normal: 

Note that in array [-5, -3, 1, 1, 2, 4] maximal product is (-5) * (-3) = 15 > 8 = 2 * 4. This means that 
maximal product can be obtained from two minimal elements instead of the two maximal. In the previous 
algorithm this was not the problem because we checked all the possible pairs. 
get_elements_with_max_product(array): 

sort(array) 
max_for_two_negative_elements = array[0] * array[1] 

n = |array| 
max_for_two_positive_elements = array[n-2] * array[n-1] 

if max_for_two_positive_elements > max_for_two_negative_elements 
return array[n-2], array[n-1] 

return array[0], array[1] 
The computational complexity of this solution is O(nlogn) because of sort() procedure. 

Good: 
get_elements_with_max_product(array): 

min1, min2, max1, max2 = +inf, +inf, -inf, -inf 
for i = 0, …, |array| - 1 

if array[i] < min1 
min2, min1 = min1, array[i] 

else if array[i] < min2 
min2 = array[i] 

if array[i] > max1 
max2, max1 = max1, array[i] 

else if array[i] > max2 
max2 = array[i] 

max_for_two_negative_elements = min1 * min2 
max_for_two_positive_elements = max1 * max2 

if max_for_two_positive_elements > max_for_two_negative_elements 
return max2, max1 

return min1, min2 
The computational complexity of this solution is O(n), because there is only one loop with n iterations. 



 
4. Write a pseudo-code (or code on any programming language) of an algorithm, which finds a leaf in 
a tree, which is the farthest leaf from the head of this tree. A tree is given by its head and every tree 
node has a list of its children referenced as node.children. For example, head.children contains and 
array of the child nodes of the tree head. Determine the computational complexity of your algorithm. 
Solution: 

get_farthest_leaf(head): 
farthest_leaf, max_distance = head, -inf 

get_farthest_leaf_recursive(head, 0, farthest_leaf, max_distance) 
return farthest_leaf 

 
get_farthest_leaf_recursive (node, distance, farthest_leaf, max_distance) 

if node.children = ∅ 
if distance > max_distance 

farthest_leaf, max_distance = node, distance 
return 

for child ∈ node.children 
get_farthest_leaf_from(node, distance + 1, farthest_leaf, max_distance) 

This algorithm recursively traverses the tree by means of depth-first search. It will check every node of the 
tree exactly once whether it is a leaf (node.children = ∅) and a distance to it is longer than the current 
maximal distance (max_distance). So its computational complexity is O(n), where n is the number of the 
tree nodes. 
A bad solution here with O(n2) complexity could be to go to every leaf node separately each time starting 
from the head. 
 


