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Abstract
A classification problem for polar flows directly follows from classical results where topological classification of gradient-like

flows were reduced to combinatorial description of mutual arrangement of nodal equilibria and invariant manifolds of sad-
dles. However, in case of four-dimensional ambient manifold a non-wandering set can contain saddles with wildly embedded
closures of separatrices. This makes classification problem impossible to solve in combinatorial terms for higher dimensions.
However, if a polar flow, defined on a four-dimensional manifold, has saddles with only two-dimensional invariant mani-
folds then heteroclinic intersections are empty. So, the intersection of two-dimensional invariant manifolds with some smooth
three-dimensional sphere 1s a link. Here 1s the construction of a Kirby diagram for a polar flow consisting of the smoothly
embedded three-dimensional sphere, the link and its framing, defined by the flow. Eventually, we prove that a Kirby diagram
1s a complete topological invariant for polar flows on four-dimensional manifolds.

Introduction

A flow f' on smooth connected closed orientable manifold M ™ of dimension n is called a
gradient-like flow 1f:

* its non-wandering set {2, consists of finite number of hyperbolic states of equilibrium;
e stable and unstable manifolds of saddles have only transversal intersection.

A gradient-like flow f*: M™ — M™" is called a polar flow if its non-wandering set consists
of two nodal equilibria and a finite number of saddle equilibria. We will say that a state of
equilibrium has a type (¢, n — ¢) if its unstable manifold has a dimension ¢ € {0, ..., n}.

In [1], [2] E. A. Leontovich and A. G. Mayer had presented an invariant for gradient-like
flows on the sphere S° called a Leontovich-Mayer scheme. Later M. Peixoto generalized
this result. In [3] he got a complete invariant for flows defined on an arbitrary surface M*
in the form of a framed Peixoto graph.

Ya. L. Umanskiy presented a complete invariant for gradient-like flows on three-
dimensional manifolds in [4]. This invariant 1s similar to Leontovich-Mayer scheme. It
contains a combinatorial description of boundaries of cells of a flow and of contiguity of
cells to nodal equilibrium states.

In [5] a complete topological classification was obtained for gradient-like flows without
heteroclinic intersections, defined on manifolds of dimension n > 3, such that the set of
saddle equilibria consists of saddles having a type (1,n — 1) or (n — 1,1). Exactly, V. Z.
Grines and E. Ya. Gurevich constructed a complete invariant called the bi-colored graph.
In the paper [6] a realization problem for such flows has been solved.

In general, gradient-like flows can have saddles of types different to (1, n—1) and (n—1, 1).
Closures of invariant manifolds of these saddles can be wildly embedded at nodal points.
An example of a gradient-like flow with the one wildly embedded separatrix of the saddle
equilibrium was constructed 1n [7]. Thus, a combinatorial classification 1s 1impossible for
gradient-like flows on manifolds of dimension n > 3. Nevertheless, 1in case of n = 4 E. V.
Zhuzhoma and V. S. Medvedev obtained a topological classification of gradient-like flows
with three states of equilibrium. It was proven 1n [8] that the class of topological equiva-
lence of such flows 1s unique and closures of invariant manifold of saddle are locally flat at
every point.

Here we consider a class P(M*) of polar flows such that for any f* € P(M?) all its saddles
have a type (2, 2).

Kirby diagram for a polar flow

Let ft € P(M*?). It follows from [9, Proposition 3.2.] that the ambient manifold M* of the
flow f!is simply connected. From [11], [10] it follows that there exists an energy function
@ : M* — [0, 4] for the f? such that it is a self-indexing Morse function strictly decreasing
along unclosed trajectories; the set Cr(¢p) of critical points coincides with the set {2 and
p(p) = dim W for any p € Cr(p), where the W' is an unstable manifold of the p. Set
0 = o c), M} = o7 1([0,]). For any ¢ € (0,2) U (2,4) the manifold X’ is a smoothly
embedded in M* sphere. Let us denote by a, w the source and sink equilibria of the flow
f1, respectively, by 2, the set of saddle equilibria. From definition it follows that for any
p,q € QU WYNW? =0 and then cl W = W)U {w}, W} = WU {a}, where the W is
a stable manifold of the g. For ¢, € (0,2), ¢; € (2,4) putl,,., = 32 capW}, I, ., = X "W},
For any p € Q?pt the sets [, ., [, are knots on the spheres =, , ¥, respectively. Let us
denote L., = U lpep Lpey = U e
pEQ pECt,

Here and everywhere below, for the flow f € P(M*) we will denote by Z’il, Ly, etc.
objects having the same meaning as Zil, L., etc. for the flow f’. From definition of a
topological equivalence the following proposition is true.

The link L. 1s a topological invariant for polar flows. To obtain a complete invari-
ant we need equip the link L. by some information. Set N, C 222 1s a disjoint union
of solid tor1 that are closed tubular neighbourhoods ot knots forming the link L.. Put
I1,. C 11, ., 1s a tubular neighbourhood of the knot [, ., and p, ., 18 its canonical meridian.
The flow’s f* trajectories define a diffeomorphism 7., : X2 \ L., — 22 \ L, by the rule
Neser (@) = Op(x) N X2, where Op(z) is a trajectory of the flow f passing through the
r € X2 \ L, The knot Lye = TNeger (fp.e,) We Will call a framing of the knot [,,.,. The set
{l,e., 1, } we will call a Kirby diagram for the flow f*.

Note, that for any ¢, ¢ belonging to the same connectivity component of the set (0, 2)U(2, 4)
the spheres Y2 and ¥? are diffeomorphic by the diffeomorphism 7, : X2 — Y7 defined by
the rule 7n.:(z) = Op(x) N X for any 2 € X2, So, the definition of a Kirby diagram and the
following theorem for a flow does not depend on choice of the c;, ¢».

Theorem 1. The flows [°, f’t c P(M?) are topologically equivalent if and only if there
exists the homeomorphism I : 221 — X 21 such that:

I.h(L.)=L,;

Framed link as a topological invariant for polar flows

2.h(l,.,) = 52,761 for any couple l,., € X3, ', . = h(l,.,).

The necessity of the theorem’s conditions follows from definition of topological equiv-
alence and Morse function’s properties. To prove sufficiency we construct the piecewise
defined homeomorphism G : M* — M* such that f! = G~ f"G.

To start with, the homeomorphisms G, : V, — V, are defined for all p € 7%, where
V,, V,y are compact canonical neighbourhoods of the saddles p, p', respectively. The re-
striction of mapping 7., on V, induces the homeomorphism H,., : 221 — 21 that can
be continued to the homeomorphisms G, : Mf}l — M ’il and ¢, © L, — L by tra-
jectories’ segments. The mappings G, and 1, coincide with the H. on the set 221 and
with the GG, on the 11, respectively. Using the gluing lemma we have the homeomorphism

G.:-M U LiulU V,— M’ﬁlu J Lyu U V. Atlast, itis possible to continue

pEQ?t pEQ?t p’EQ?Ht p’GQ?Ht

the G to the homeomorphism G : M* — M’ by trajectories segments applying the gluing
lemma.

Figure 1: Construction of the homeomorphism of the manifolds carrying the flows f*, .
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