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Abstract
A classification problem for polar flows directly follows from classical results where topological classification of gradient-like
flows were reduced to combinatorial description of mutual arrangement of nodal equilibria and invariant manifolds of sad-
dles. However, in case of four-dimensional ambient manifold a non-wandering set can contain saddles with wildly embedded
closures of separatrices. This makes classification problem impossible to solve in combinatorial terms for higher dimensions.
However, if a polar flow, defined on a four-dimensional manifold, has saddles with only two-dimensional invariant mani-
folds then heteroclinic intersections are empty. So, the intersection of two-dimensional invariant manifolds with some smooth
three-dimensional sphere is a link. Here is the construction of a Kirby diagram for a polar flow consisting of the smoothly
embedded three-dimensional sphere, the link and its framing, defined by the flow. Eventually, we prove that a Kirby diagram
is a complete topological invariant for polar flows on four-dimensional manifolds.

Introduction

A flow f t on smooth connected closed orientable manifold Mn of dimension n is called a
gradient-like flow if:

• its non-wandering set Ωf t consists of finite number of hyperbolic states of equilibrium;
• stable and unstable manifolds of saddles have only transversal intersection.

A gradient-like flow f t :Mn →Mn is called a polar flow if its non-wandering set consists
of two nodal equilibria and a finite number of saddle equilibria. We will say that a state of
equilibrium has a type (i, n− i) if its unstable manifold has a dimension i ∈ {0, . . . , n}.

In [1], [2] E. A. Leontovich and A. G. Mayer had presented an invariant for gradient-like
flows on the sphere S2 called a Leontovich-Mayer scheme. Later M. Peixoto generalized
this result. In [3] he got a complete invariant for flows defined on an arbitrary surface M 2

in the form of a framed Peixoto graph.
Ya. L. Umanskiy presented a complete invariant for gradient-like flows on three-

dimensional manifolds in [4]. This invariant is similar to Leontovich-Mayer scheme. It
contains a combinatorial description of boundaries of cells of a flow and of contiguity of
cells to nodal equilibrium states.

In [5] a complete topological classification was obtained for gradient-like flows without
heteroclinic intersections, defined on manifolds of dimension n ≥ 3, such that the set of
saddle equilibria consists of saddles having a type (1, n − 1) or (n − 1, 1). Exactly, V. Z.
Grines and E. Ya. Gurevich constructed a complete invariant called the bi-colored graph.
In the paper [6] a realization problem for such flows has been solved.

In general, gradient-like flows can have saddles of types different to (1, n−1) and (n−1, 1).
Closures of invariant manifolds of these saddles can be wildly embedded at nodal points.
An example of a gradient-like flow with the one wildly embedded separatrix of the saddle
equilibrium was constructed in [7]. Thus, a combinatorial classification is impossible for
gradient-like flows on manifolds of dimension n > 3. Nevertheless, in case of n = 4 E. V.
Zhuzhoma and V. S. Medvedev obtained a topological classification of gradient-like flows
with three states of equilibrium. It was proven in [8] that the class of topological equiva-
lence of such flows is unique and closures of invariant manifold of saddle are locally flat at
every point.

Here we consider a class P(M 4) of polar flows such that for any f t ∈ P(M 4) all its saddles
have a type (2, 2).

Kirby diagram for a polar flow

Let f t ∈ P(M 4). It follows from [9, Proposition 3.2.] that the ambient manifold M 4 of the
flow f t is simply connected. From [11], [10] it follows that there exists an energy function
φ : M 4 → [0, 4] for the f t such that it is a self-indexing Morse function strictly decreasing
along unclosed trajectories; the set Cr(φ) of critical points coincides with the set Ωf t and
φ(p) = dimW u

p for any p ∈ Cr(φ), where the W u
p is an unstable manifold of the p. Set

Σ3
c = φ−1(c), M 4

c = φ−1([0, c]). For any c ∈ (0, 2) ∪ (2, 4) the manifold Σ3
c is a smoothly

embedded in M 4 sphere. Let us denote by α, ω the source and sink equilibria of the flow
f t, respectively, by Ω2

f t the set of saddle equilibria. From definition it follows that for any
p, q ∈ Ω2

f t W
u
p ∩W s

q = ∅ and then clW u
p = W u

p ∪ {ω}, clW s
q = W s

q ∪ {α}, where the W s
q is

a stable manifold of the q. For c1 ∈ (0, 2), c2 ∈ (2, 4) put lp,c1 = Σ3
c1
capW u

p , lp,c2 = Σ3
c2
∩W s

p .
For any p ∈ Ω2

f t the sets lp,c1, lp,c2 are knots on the spheres Σ3
c1

, Σc2, respectively. Let us
denote Lp,c1 =

⋃
p∈Ω2

ft

lp,c1, Lp,c2 =
⋃

p∈Ω2
ft

lp,c2.

Here and everywhere below, for the flow f ′t ∈ P(M 4) we will denote by Σ′3
c1

, L′
c1

etc.
objects having the same meaning as Σ3

c1
, Lc1 etc. for the flow f t. From definition of a

topological equivalence the following proposition is true.
The link Lc1 is a topological invariant for polar flows. To obtain a complete invari-

ant we need equip the link Lc1 by some information. Set Nc2 ⊂ Σ3
c2

is a disjoint union
of solid tori that are closed tubular neighbourhoods of knots forming the link Lc2. Put
Πp,c2 ⊂ Πp,c2 is a tubular neighbourhood of the knot lp,c1 and µp,c2 is its canonical meridian.
The flow’s f t trajectories define a diffeomorphism ηc2c1 : Σ

3
c2
\ Lc2 → Σ3

c1
\ Lc1 by the rule

ηc2c1(x) = Of t(x) ∩ Σ3
c1

, where Of t(x) is a trajectory of the flow f t passing through the
x ∈ Σ3

c2
\ Lc2. The knot l̃p,c1 = ηc2c1(µp,c2) we will call a framing of the knot lp,c1. The set

{lp,c1, l̃p,c1} we will call a Kirby diagram for the flow f t.
Note, that for any c, ĉ belonging to the same connectivity component of the set (0, 2)∪(2, 4)

the spheres Σ3
c and Σ3

ĉ are diffeomorphic by the diffeomorphism ηcĉ : Σ
3
c → Σ3

ĉ defined by
the rule ηcĉ(x) = Of t(x) ∩ Σ3

ĉ for any x ∈ Σ3
c. So, the definition of a Kirby diagram and the

following theorem for a flow does not depend on choice of the c1, c2.
Theorem 1. The flows f t, f ′t ∈ P(M 4) are topologically equivalent if and only if there
exists the homeomorphism h : Σ3

c1
→ Σ′3

c1
such that:

1.h(Lc1) = L′
c1

;

2.h(l̃p,c1) = l̃′p′,c1 for any couple lp,c1 ∈ Σ3
c1

, l′p′,c1 = h(lp,c1).

The necessity of the theorem’s conditions follows from definition of topological equiv-
alence and Morse function’s properties. To prove sufficiency we construct the piecewise
defined homeomorphism G :M 4 →M 4 such that f t = G−1f ′tG.

To start with, the homeomorphisms Gp : Vp → Vp′ are defined for all p ∈ Ω2
f t, where

Vp, Vp′ are compact canonical neighbourhoods of the saddles p, p′, respectively. The re-
striction of mapping ηc2c1 on Vp induces the homeomorphism Hc1 : Σ3

c1
→ Σ′3

c1
that can

be continued to the homeomorphisms Gc1 : M 4
c1

→ M ′4
c1

and ψp : Lup → Lup′ by tra-
jectories’ segments. The mappings Gc1 and ψp coincide with the Hc1 on the set Σ3

c1
and

with the Gp on the Πu, respectively. Using the gluing lemma we have the homeomorphism
G+ :M 4

c1
∪

⋃
p∈Ω2

ft

Lup∪
⋃

p∈Ω2
ft

Vp →M ′4
c1
∪

⋃
p′∈Ω2

f ′t

Lup′∪
⋃

p′∈Ω2

f ′t

Vp′. At last, it is possible to continue

the G+ to the homeomorphism G :M 4 →M ′4 by trajectories segments applying the gluing
lemma.

Figure 1: Construction of the homeomorphism of the manifolds carrying the flows f t, f ′t.
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