On Gradient-like Flows with One Saddle Equilibrium of Type (2,2) Gurevich Elena, Saraev Ilya

NRU HSE Nizhniy Novgorod
isaraev@hse.ru

Figure 1: Phase portrait of $f^{t} \in G_{1,1}\left(M^{4}\right)$
Let f^{t} be a gradient-like flow on a closed manifold M^{4} of dimension four. We say that an equilibrium $p \in \Omega_{f^{t}}$ is of type $(i, 4-i)$ if the dimension of its unstable manifold W_{p}^{u} equals $i \in\{0, \ldots, 4\}$. Denote by k_{i} the number of equilibria of type (i,4-i).
Theorem 1. Suppose that invariant manifolds of different saddle equilibria of f^{t} do not intersect each other. Then the number $g_{f^{t}}=\frac{k_{1}+k_{3}-k_{0}-k_{4}+2}{2}$ is integer non-negative. Moreover, the manifold M^{4} is homeomorphic to the connected sum of the complex projective plane $\mathbb{C P}^{2}$ and $g_{f^{t}}$ copies of the direct product $\mathbb{S}^{3} \times \mathbb{S}^{1}$ if and only if $k_{2}=1$.
The statement "if" follows from [1, Theorem 1].
Let $G_{g, 1}\left(M^{4}\right)$ be a class of gradient-like flows without heteroclinic intersections such that for any $f^{t} \in G_{g, 1}\left(M^{4}\right)$ the equalities $g=g_{f t}, k_{2}=1$ hold. We are going to describe a class of topological equivalence of any flow $f^{t} \in G_{g, 1}\left(M^{4}\right)$ using the following construction. We prove that the union $W_{\Omega_{f^{t}}^{0}}^{u} \cup W_{\Omega_{f^{t}}^{1}}^{u}$ is a connected graph with $g_{f^{t}}$ pairwise disjoint cycles. Denote by $A_{f^{t}}$ a maximal tree of these graph, by $R_{f^{t}}$ the union of stable invariant of all equilibria of f^{t} that does not belong to $A_{f^{t}}$ and set $V_{f^{t}}=M^{4} \backslash\left(A_{f^{t}} \cup R_{f^{t}}\right)$.
Proposition 1. For any $f^{t} \in G_{g, 1}\left(M^{4}\right)$ there exists a smooth 3-sphere $S_{f^{t}}^{3} \subset V_{f^{t}}$ such that (see fig. 1):

1. $S_{f^{t}}^{3}$ bounds a ball $B_{f^{t}}^{4}$ such $A_{f^{t}} \subset \operatorname{int} B_{f^{t}}^{4} \subset\left(V_{f^{t}} \cup A_{f^{t}}\right)$;
2. for any point $x \in V_{f^{t}}$ the intersection of the trajectory \mathcal{O}_{x} of x and $S_{f^{t}}^{3}$ is transversal.
We set $C_{f^{t}}^{0}=S_{f^{t}}^{3} \cap \bigcup_{\sigma^{1} \in \Omega_{f^{t}}^{1}} W_{\sigma^{1}}^{u}, C_{f^{t}}^{1}=S_{f^{t}}^{3} \cap W_{\sigma^{2}}^{u}, C_{f^{t}}^{2, u}=$ $S_{f^{t}}^{3} \cap \bigcup_{\sigma^{3} \in \Omega_{f^{t}}^{3}} W_{\sigma^{3}}^{u}, C_{f^{t}}^{2, s}=S_{f^{t}}^{3} \cap \bigcup_{\sigma^{1} \in \Omega_{f^{t}}^{1}} W_{\sigma^{1}}^{s}$ and call the family
$K_{f^{t}}=\left\{C_{f^{t}}^{0}, C_{f^{t}}^{1}, C_{f^{t}}^{2, u}, C_{f^{t}}^{2, s}\right\}$ a Kirby diagram of the flow f^{t}.
Corollary 1. The set $C_{f^{t}}^{0}$ is a union of points, $C_{f^{t}}^{1}$ is a knot, $C_{f^{t}}^{2, u}$ and $C_{f^{t}}^{2, s}$ are disjoint unions of smoothly embedded twodimensional spheres.

Figure 2: Kirby diagram and bicolor graph of the flow f^{t} from fig. 1
Lemma 1. The set $C_{f^{t}}^{1}$ is a trivial knot, and the set $\mathrm{cl} W_{p}^{u}$ is the locally flat two-dimensional sphere.
We will say that Kirby diagrams $K_{f^{t}}, K_{f^{\prime t}}$ of flows $f^{t}, f^{\prime t} \in$ $G_{g, 1}\left(M^{4}\right)$ are equivalent if there exists a homeomorphism h : $S_{f^{t}}^{3} \rightarrow S_{f^{t}}^{3}$ such that:

1. $h\left(C_{f^{t}}^{i}\right)=C_{f^{t}}^{i}$ for $i \in\{0,1\}$;
2. $h\left(C_{f^{t}}^{2, u}\right)=C_{f^{t}}^{2, u}, h\left(C_{f^{t}}^{2, s}\right)=C_{f^{t t}}^{2, s}$.

Theorem 2. Let Kirby diagrams $K_{f^{t}}, K_{f^{\prime t}}$ of flows $f^{t}, f^{\prime t} \in$ $G_{g, 1}\left(M^{4}\right)$ are equivalent. Then $f^{t}, f^{\prime t}$ are topologically equivalent.
For any flow $f^{t} \in G_{g, 1}\left(M^{4}\right)$ similarly to [2], [3] we construct a bicolor graph $\Gamma_{f t}$ (see fig 2).
Bicolor graphs $\Gamma_{f^{t}}, \Gamma_{f^{\prime t}}$ of flows $f^{t}, f^{\prime t} \in G_{g, 1}\left(M^{4}\right)$ are isomorphic if there is an isomorphism $\gamma: \Gamma_{f^{t}} \rightarrow \Gamma_{f^{t t}}$ preserving colors of edges and a marked vertex.
Theorem 3. Flows f^{t}, $f^{\prime t} \in G_{g, 1}\left(M^{4}\right)$ are topologically equivalent if and only if their bicolor graphs are isomorphic.
The idea of the proof is to show that an equivalence of bicolor graphs $\Gamma_{f^{t}}, \Gamma_{f^{\prime t}}$ implies an equivalence of Kirby diagrams $K_{f^{t}}, K_{f^{\prime \prime}}$.

References

[1] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., On the structure of the ambient manifold for Morse-Smale systems without heteroclinic intersections, Trudy Matematicheskogo instituta im. V. A. Steklova RAN, 2017, V. 297, p. 201-210.
[2] Grines V. Z., Gurevich E. Y., On classification of MorseSmale flows on projective-like manifolds, Izvestia RAN, Seriya matematicheskaya, 2022, V. 86 (5), p. 43-72.
[3] Grines V. Z., Gurevich E. Y., Combinatorial invariant for gradient-like flows on the connected sum $\mathbb{S}^{n-1} \times \mathbb{S}^{1}$, Matematicheskiy sbornik, 2023, V. 214, No. 5, p. 97-127.

