On Gradient-like Flows with One Saddle Equilibrium of Type (2,2)Gurevich Elena, Saraev Ilya

NRU HSE Nizhniy Novgorod

isaraev@hse.ru

 $K_{f^t} = \{C_{f^t}^0, C_{f^t}^1, C_{f^t}^{2,u}, C_{f^t}^{2,s}\}$ a Kirby diagram of the flow f^t . **Corollary 1.** The set $C_{f^t}^0$ is a union of points, $C_{f^t}^1$ is a knot, $C_{f^t}^{2,u}$ and $C_{f^t}^{2,s}$ are disjoint unions of smoothly embedded twodimensional spheres.

 K_{f^t}

Figure 2: Kirby diagram and bicolor graph of the flow f^t from fig. 1

Figure 1: Phase portrait of $f^t \in G_{1,1}(M^4)$

Let f^t be a gradient-like flow on a closed manifold M^4 of dimension four. We say that an equilibrium $p \in \Omega_{f^t}$ is of type (i, 4 - i) if the dimension of its unstable manifold W_p^u equals $i \in \{0, \ldots, 4\}$. Denote by k_i the number of equilibria of type (i, 4 - i).

Theorem 1. Suppose that invariant manifolds of different saddle equilibria of f^t do not intersect each other. Then the number $g_{f^t} = \frac{k_1 + k_3 - k_0 - k_4 + 2}{2}$ is integer non-negative. Moreover, the manifold M^4 is homeomorphic to the connected sum of the complex projective plane \mathbb{CP}^2 and g_{f^t} copies of the direct product $\mathbb{S}^3 \times \mathbb{S}^1$ if and only if $k_2 = 1$.

The statement "if" follows from [1, Theorem 1].

Let $G_{g,1}(M^4)$ be a class of gradient-like flows without heteroclinic intersections such that for any $f^t \in G_{g,1}(M^4)$ the equalities $g = g_{f^t}, k_2 = 1$ hold. We are going to describe a class of topological equivalence of any flow $f^t \in G_{g,1}(M^4)$ using the following construction. We prove that the union $W_{\Omega_{ft}^0}^u \cup W_{\Omega_{ft}^1}^u$ is a connected graph with g_{f^t} pairwise disjoint cycles. Denote by A_{f^t} a maximal tree of these graph, by R_{f^t} the union of stable invariant of all equilibria of f^t that does not belong to A_{f^t} and set $V_{f^t} = M^4 \setminus (A_{f^t} \cup R_{f^t})$. **Proposition 1.** For any $f^t \in G_{g,1}(M^4)$ there exists a smooth β -sphere $S_{f^t}^3 \subset V_{f^t}$ such that (see fig. 1): 1. $S_{f^t}^3$ bounds a ball $B_{f^t}^4$ such $A_{f^t} \subset \operatorname{int} B_{f^t}^4 \subset (V_{f^t} \cup A_{f^t})$; 2. for any point $x \in V_{f^t}$ the intersection of the trajectory \mathcal{O}_x of x and $S_{f^t}^3$ is transversal. We set $C_{f^t}^0 = S_{f^t}^3 \cap \bigcup_{\sigma^1 \in \Omega_{f^t}^1} W_{\sigma^1}^u, C_{f^t}^1 = S_{f^t}^3 \cap W_{\sigma^2}^u, C_{f^t}^{2,u} =$ $S_{f^t}^3 \cap \bigcup_{\sigma^3 \in \Omega_{f^t}^3} W_{\sigma^3}^u, C_{f^t}^{2,s} = S_{f^t}^3 \cap \bigcup_{\sigma^1 \in \Omega_{f^t}^1} W_{\sigma^1}^s$ and call the family **Lemma 1.** The set $C_{f^t}^1$ is a trivial knot, and the set $\operatorname{cl} W_p^u$ is the locally flat two-dimensional sphere.

We will say that Kirby diagrams $K_{f'}, K_{f'}$ of flows $f', f'' \in G_{g,1}(M^4)$ are equivalent if there exists a homeomorphism $h: S_{f'}^3 \to S_{f''}^3$ such that:

1.
$$h(C_{f^t}^i) = C_{f'^t}^i$$
 for $i \in \{0, 1\};$

2.
$$h(C_{f^t}^{2,u}) = C_{f'^t}^{2,u}, \ h(C_{f^t}^{2,s}) = C_{f'^t}^{2,s}.$$

Theorem 2. Let Kirby diagrams K_{f^t} , $K_{f'^t}$ of flows f^t , $f'^t \in G_{g,1}(M^4)$ are equivalent. Then f^t , f'^t are topologically equivalent. lent.

For any flow $f^t \in G_{g,1}(M^4)$ similarly to [2], [3] we construct a bicolor graph Γ_{f^t} (see fig 2).

Bicolor graphs Γ_{f^t} , $\Gamma_{f'^t}$ of flows $f^t, f'^t \in G_{g,1}(M^4)$ are *iso-morphic* if there is an isomorphism $\gamma : \Gamma_{f^t} \to \Gamma_{f'^t}$ preserving colors of edges and a marked vertex.

Theorem 3. Flows $f^t, f'^t \in G_{g,1}(M^4)$ are topologically equivalent if and only if their bicolor graphs are isomorphic.

The idea of the proof is to show that an equivalence of bicolor graphs Γ_{f^t} , $\Gamma_{f^{nt}}$ implies an equivalence of Kirby diagrams K_{f^t} , $K_{f^{nt}}$.

References

- [1] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., On the structure of the ambient manifold for Morse-Smale systems without heteroclinic intersections, Trudy Matematicheskogo instituta im. V. A. Steklova RAN, 2017, V. 297, p. 201-210.
- [2] Grines V. Z., Gurevich E. Y., On classification of Morse-Smale flows on projective-like manifolds, Izvestia RAN, Seriya matematicheskaya, 2022, V. 86 (5), p. 43-72.
- [3] Grines V. Z., Gurevich E. Y., Combinatorial invariant for gradient-like flows on the connected sum S^{n−1} × S¹, Matematicheskiy sbornik, 2023, V. 214, No. 5, p. 97-127.