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Abstract

We prove that a closed smooth four-dimensional manifold, ad-
mitting a polar flows with two saddles of type (2, 2) is homeo-
morphic to exactly one of three manifolds CP 2♯CP 2, S2 × S2
or CP 2♯CP 2.

We recall that a smooth flow f t : Mn → Mn defined on a
closed smooth manifold Mn of dimension n is called a polar
flow if

1. a non-wandering set Ωf t of f t consists exactly of one sink, one
source, and a finite number of saddle hyperbolic equilibrium
states;

2. invariant manifolds of equilibrium states intersect each other
transversely.

The Morse index of a hyperbolic equilibrium state p is a num-
ber equal to the dimension of its unstable manifold W u

p .
Let f t be a polar flow on a manifold M 4 and the set Ωf t con-

sists of exactly a sink, a source, and two saddles σ1, σ2 of Morse
index 2. Then M 4 is simply connected, and its homology group
H2(M

4,Z) is isomorphic to Z2. According to Freedman’s clas-
sification of simply connected four-dimensional manifolds (see
[1]), the topology of M 4 is determined by a class of equiva-
lence of intersection form, which is an unimodular symmetrical
quadratic form Q : H2(M

4,Z) × H2(M
4,Z) → Z that put

in a correspondence to each elements x, y ∈ H2(M
4,Z) their

intersection number. For fixed basic of H2(M
4,Z), the form

Q is represented by a symmetric 2 × 2 matrix A
Q

with inte-
ger elements. When basis is changed, matrix A

Q
is replaced by

CTA
Q
C, where C is an integer matrix. That is why topology

of M 4 is determined, up to orientation preserving homeomor-
phism, by a classes of congruent (under the integers) unimod-
ular symmetrical matrices. Classification of such matrices was
given by Gauss in [2], see also [3]. We find all representatives
of congruence classes of determinant matrices by elementary
methods and use the result of [4] to find the representatives in
the indeterminate case.

Kirby diagrams determing manifolds CP 2♯CP 2, S2 × S2 and CP 2♯CP 2

Proposition. Any binary unimodular integer matrix is con-
gruent to one of the following matrices:

A1 =

(
1 0
0 1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
−1 0
0 1

)
, A4 =

(
−1 0
0 −1

)
We consrtuct smooth closed manifolds carring polar flows with

two saddles and having the intersection forms represented by
matricies above in the following way. Let H4

k = Bk × B4−k,
k ∈ {0, . . . , 4} and Fk be a vector field on H4

k given by
ẋ = −x, ẏ = y, x ∈ Bk, y ∈ Bn−k. We glue two copies of H4

2

to H4
0 by framed links showed on the figures a)-с), above and

obtain a manifold with boudnary diffeomorphic to the 3-sphere.
Then we attach H4

4 to this manifold to get the smooth closed
manifolds M 4

i . We prove that there exist a basic of H4
2(M

4
i )

such that the matrix of intersection form of M 4
i in this basic

coincides with A1, A2, A3, correspondingly. Since A4 = −A1,
manifolds, determined by this matricies are gomeomorphic but
have the opposite orientation. Due to Freedman’s result, the
constructed manifolds exhausted the list of all smooth mani-
folds admitting polar flows with two saddles.

Theorem. Let M 4 admit a polar flow f t, non-wandering set
of wich consists of exactly a sink, a source, and two saddles
σ1, σ2 of Morse index 2. Then M 4 is homeomorphic to one of
the following manifolds:
1. a connected sum of two complex projective planes CP 2♯CP 2

with a canonical orientation induced by a complex structure;
2. a direct product S2 × S2 of two copies of two-dimensional

spheres.
3. a connected sum CP 2♯CP 2 of two copies complex projective

planes with opposite orientations.
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