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A Remark on the Mahowald’s Elements in Stable Homotopy Groups of Spheres
Akhmet’ev P. M.

Higher School of Economics, Moscow
pmakhmet@mail.ru

A geometrical description of the Mahowald elements [2] of dimensions 2¢, i > 3 is presented. The
result is an elementary geometrical reformulation of [3|, based on skew-framed immersion cobordism
group [1].

This is a joint result with Th. Yu. Popelenskii and O.D. Frolkina.
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Convexity and its Applications in the Theory
of Two-dimensional Dynamical Systems

Alekseeva E.S.!, Rassadin A.E.?

! Independent University of Moscow, 2 Nizhny Novgorod Mathematical Society
Lkometarella@mail.ru, 2brat_ras@list.ru

The report deals with the two-dimensional system of ordinary differential equations:

i=f(z,y)  §=g(xy) (1)

possessing by periodic solution v with period T, this plane closed curve v being the boundary of
some plane convex region K with the support function p(¢): v = JK.

In this work we show that the assumption about convexity of K gives us the possibility to
estimate a number of important values concerning the system (1) in the absence of information
about the explicit form for exact solution of this system.

At first let us take into account the diameter D and the width A for the convex region K
(D> A):

D= sup B(p) A= inf B(yp) (2)
©el0,27) ©€[0,27]
where B(p) = p(¢) + p(m + @) is the breadth of the convex region K in the direction ¢.
The following inequalities for the length L = fv ds (ds = \/2? + y?dt) of K and the surface area

F=1 ﬁy xdy — ydz of K including parameters (2) is known to hold [1] :

A A
2\/D2—A2+2Aarcsin5§L§2\/D2—A2—|—2Darcsin5 (3)



and

A
‘AD§2PEQAVD2—A2+D%mmnB. (4)

In particular let K be convex region with constant breadth then both of values (2) coincide and
from inequality (3) one can immediately obtain that in this case L = 7w D.

It means that if (z(t), y(¢)) is unknown solution of system (1) corresponding to K of such shape
then one can calculate exactly the next integral:

T
/0 V2 (), () + ¢?(x(t),y(t) dt =7 D. (5)

Further let us consider the Fenchel inequality [2] including curvature k of curve ~:

ﬁk%ZQW. (6)

If K is convex region then on unknown solution (z(t), y(t)) of system (1) defining « inequality
(6) is reduced to the following identity:

T s s
| e, (7)
o Tty

where derivatives of the second order one can extract from system (1):

8fg2y)4_g@%y)8f@ay) ﬂ==f@ay>8ggiy)

dg(z,y)
Oy '

dy

&= f(z,y) +g(z,y)

In the report applications of formulae (3)-(5) and (7) to the Hamilton systems

2
Yy
H(z,y) =L +U@) (%)
with different potential energies U(x) obeying to the requirement U”(z) > 0 will be discussed.

We underline that for system (8) there is a simple relation F' = 27 I between the surface area F'
and the action variable I corresponding to curve 7 hence inequality (4) is very fruitful for studying
of such systems because of parameters (2) can be easily calculated for a wide range of Hamiltonians
(8).

The results described above may be useful under solution of the second part of Hilbert’s 16th
problem and the weakened Hilbert’s 16th problem (see [3, 4] and references there in).
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Gromov-Hausdorff Hyperspaces of R”
Antonyan S. A.

National University of Mezico (UNAM)
antonyan@unam.mz

Let (M,d) be a metric space. For two non-empty subsets A, B C M, the Hausdorff distance
dp (A, B) is defined as follows: dp(A, B) = max{sup,c4 d(a, B), supycpd(b, A)}, where d(z,C) =
inf{d(z,c) | ¢ € C}. The set of all non-empty compact subsets of M is denoted by 2 and is
endowed with the Hausdorff metric dg. The pair (2M,dy) is called the hyperspace of M.

For two compact metric spaces X and Y, their Gromov-Hausdorff distance dgg(X,Y) is defined
to be the infimum of all Hausdorff distances dg(i(X), j(Y)) for all metric spaces M and all isometric
embeddings i : X — M and j : Y — M. It is a useful tool for studying topological properties of
families of metric spaces.

Clearly, the Gromov-Hausdorff distance between two isometric spaces is zero; it is a metric on
the family GH of isometry classes of compact metric spaces. The metric space (GH, dgp) is called
the Gromov-Hausdorff space.

In this talk we mainly are interested in the subspace GH(R™) of GH consisting of the classes
[E] €GH whose representative E is a metric subspace of the standard Euclidean space R", n > 1.
GH(R™) is called the Gromov-Hausdorff hyperspace of R™. One of the main results in this talk
asserts that GH(R™) is homeomorphic to the orbit space 28" /E(n), where 28" is the hyperspace of
all non-empty compact subsets of R™ endowed with the Hausdorff metric, and E(n) is the isometry
group of R™. This is applied to describe the topological type of GH(R").

How Many Ways are there to Tile a Rectangle with Polyominoes?

Askerova A. A., Aleksandrov N. M., Dzhuraev A. A., Kaniber V.V.,
Kruzhkov D. O., Raeva A. A., Stolbova V. A.

Bauman Moscow State Technical University, Moscow, Russia
1selaskerova@yandex.Tu

Abstract. We discuss the statistical weight problem for a system of graphs embedded in a square
lattice with respect to interrelations with the cluster characterizing problem. On simple examples we
explore difficulties arising in generating function constructions and analyze possibilities of techniques
generalization.

Introduction. A polyomino is a plane geometric figure formed by joining equal squares. An
n-omino is a set of n rookwise connected unit squares [1].

Finding a graph covering of a lattice is equivalent to tiling an area with polyominoes. This
problem reduces to building a generating function G (z). The following techniques to obtain the
tilings are introduced and investigated.

Direct method of counting the number of partitions. Suppose a m X n stripe and a set of poly-
ominoes are given. Construct all the possible partitions of the stripe, where a monomino, that is a

1 x 1 square, is denoted by z, graphically. Generating functions for domino tilings are G (z) = 1_122
for a 1 x n stripe, G (z) = 1_22%24 for a 2 x n stripe, G (z) = % for a 3 x n stripe.

Indirect method of counting the number of partitions. Supposed there is a finite graph G given,
a solution of the domino tiling problem is equivalent to a dimer arrangement which contains all
points of G [2]. Introduce the multiplication operation for dimer partitions of a 2 X n stripe and

11



direct vertical dimers to avoid identical results from different combinations. Square roots of the
following function‘s formal power series expansion coefficients give the number of possible tilings:
G() =

Whereas the solution to the dimer tiling problem of a 2 x n field is already known, the use of
this method could lead to solving more general problems.

Coloured digraphs method. Suppose there are a rectangular m x n field and a set of arbitrary
tiles. Then the coloured digraphs method can be applied to obtain all the possible partitions of the
given field.

The graph assembly is represented by coloured oriented trees, where adjacent vertices may be
of the same colour. The operations applied to the field units, 1 X 1 squares, are denoted by colours
of vertices. There are four operations of joining a square: without forming a spring, with forming
a horizontal spring, with forming a vertical spring and with forming both horizontal and vertical
springs, and the operation of translation. Then the number of all possible partitions of a m x n field
into arbitrary tiles is 22mn—m="

Suggested applications of the digraph method. Consider the following questions connected with
the problem of structural complexity of a cluster for the development of the method.

e How many ways are there to form a cluster with a given boundary from primitives of a fixed
number and types?

e Derive the structural complexity of an arbitrary cluster from the complexity of its assembly
and the complexity of generating the primitive class.

e Consider enumerating the structures of primitives for a fixed rectangular field and arbitrary
numbers of primitives.

e Enumerate the ways to assemble certain primitives and choose the optimal way for the given
structure of joining and field size.

References

[1] Solomon W. Golomb. Polyominoes Which Tile Rectangles. Journal of Combinatorial Theory,
Series A 51, 117-124, 1989.

[2] Kasteleyn, P. W. (1967), "Graph theory and crystal physics", in Harary, F., Graph Theory and
Theoretical Physics, New York: Academic Press, pp 43-110.

On Topologycal Properties of the Volume Entropy of Geodesic Flows
Babenko 1.

University of Montpellier
wan.babenko Qumontpellier. fr

In 1979 Mannig estimated from bellow the topological entropy of the geodesic flow of a Rieman-
nian metric on some manifold by the growth rate of the geodesic balls on its universal covering.
Nowadays this growth rate is known as asymptotic volume or volume entropy of the geodesic flow.
If we change the given metric in the class of metrics of constant volume equal to 1 the infimum of the
volume entropy, if it is positive, provides an interesting topological invariant of the given manifold.
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In the talk we give a little review of old known results in the direction as well as we establish the
recent development.

Lorenz-type Attractor in a Piecewise Smooth System: Rigorous Results
Barabash N. V., Belykh V.N.

Volga state university of water transport, Nizhny Novgorod State University
barabash@itmm.unn.ru

In this talk we consider a glued 3D system A composed from linear subsystems Az, A; and A,
(z,y,2) € R%. The subsystems A4, A4; and A, are defined in the domains G,G; and G, respectively,
where

Gs:lz| <1,y € R,z < b,
Gp:(r<—1,2<b)U(x < —signy,z > b),y € R, (1)
Gr:(x>1,2<bU(z > —signy,z > b),y € R,

b is a positive parameter. Subsystems are defined as follows

As @ T=x,9=—ay, Z2=—vz,

t=-Nx=x1l)£w(z-0D), (2)
A o g=-py=£1),
Z=Fw(x£1l)—Az-0),

where o > 0, 8 > 0 and v, w, X\ are positive parameters.

For the system (1),(2), we analytically obtain the Poincare return map in explicit form. This
allows us to rigorously get all principle bifurcations of the system, in particular, the bifurcations
of the birth and death of a strange attractor. Analytically obtaining expressions for Lyapunov
exponents on trajectories of the attractor, we proved that this attractor is singularly hyperbolic, i.e.
"genuinely" strange. The corresponding theorems are given.

Acknowledgments. This work was supported by RFBR under Grant No. 18-01-00556 (to
V.B. and N.B) and RFBR under Grant No. 18-31-20052 (to N.B).

Periodic and Bounded Solutions, and Bifurcations of
Functional-differential Equations of Pointwise Type

Beklaryan L. A., Beklaryan A. L.

Central Economics and Mathematics Institute RAS
National Research University Higher School of Economics
beklar@cemi.rssi.ru, abeklaryan@hse.ru

We consider a functional differential equation of pointwise type (FDEPT)

x(t) :f(tﬂx(‘h(t)v"‘7$(QS(t)))7 t € Bp, (1)

where f: R x R™ — R”™ — mapping of the C(©) class; q;(+),J
line preserving orientation; Bp is either closed interval [to, ¢1]

=1,...,s — homeomorphisms of the
or closed half-line [tg, +-00[ or line R.
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The approach proposed for the study of such equations is based on a formalism whose central
element is the construction using a finitely generated group

Q:<q17”'7q8>

of homeomorphisms of the line (the group operation in such a group is the superposition of two
homeomorphisms).

The importance of equations of the considered type is determined by the fact that the theory of
solutions of such equations is closely related to the theory of soliton solutions for infinite-dimensional
ordinary differential equations [1]. The equation (1) defined on the entire line canonically induce
an infinite-dimensional ordinary differential equation. In this case, to each solution of the equa-
tion (1) there corresponds a one-to-one solution of the traveling wave type of the induced infinite-
dimensional equation. In particular, finite-difference analogs of equations of mathematical physics
define infinite-dimensional dynamical systems. Important subclasses of solutions of the traveling
wave type of infinite-dimensional ordinary differential equations are periodic and bounded solutions
of the traveling wave type, to which the periodic and bounded solutions of the induced functional
differential equations correspond.

The main goal in the study of such differential equations is the investigation of the initial-
boundary value problem

x(t) :f(tﬂx(ql(t)v"‘7x(QS(t)))7 t € Bg, (2)
i(t) = p(t), t€R\Br, ¢()€ Lo(R,R"), 3)
z(t)=z, teR, TeR" (4)

which we will call the basic initial-boundary value problem. In a general situation, when t # tg, t1,
or deviations of the argument are arbitrary, we have a problem with non-local initial-boundary
conditions. If the group @ is trivial, the initial-boundary problem 2-4 goes into the well-known
Cauchy problem for ordinary differential equations (ODE).

Solutions of the initial-boundary value problem under consideration do not inherit such remark-
able properties of ODEs as the existence and uniqueness of the solution, the pointwise completeness
of the solution space, the n-parametry of the solution space, the stability of the equation, etc. How-
ever, within the framework of the proposed formalism, it is possible to describe the procedures for
expanding the class of ODEs while preserving one or another property. In particular, an extension
procedure is described, in which there are no branching solutions, as well as a violation of point
completeness.
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Evolution and Controlling of Hyperbolic the Plykin - Newhouse Attractor
by the Pyragas Method

Belyakin S., Shyteev S., Kuznetsov S.

Physics of Faculty, State University of Moscow, Moscow
belyakin1962Q@mail.ru

In the present contribution consideration is being given to an autonomous physical system which
is characterized by the presence of the attractor of a hyperbolic type. We study the possibility of
controlling and evolution the Plykin - Newhous attractor of this type by the Pyragas method. The
choice of the method of control. As such it is possible to use an external signal or the introduction
of additional delayed feedback.

Introduction. Hyperbolicity is a fundamental feature of chaotic systems. It is as follows: a tangent
space Y of such systems is a combination of three subspaces; stable E*, unstable E* and EY neutral.
Close trajectories which correspond to converge exponentially to E* each other when ¢ — +o00, and
those which correspond to E* - when t — —oo. In the subspace E° the vectors contract and expand
more slowly than the exponential velocity. When the degree of contraction and expansion in the
subspaces E® and E* changes from point to point along the trajectory, such systems are called non-
uniformly hyperbolic. Dynamic systems with uniform hyperbolicity of all the trajectories are called
Anosov systems. Smale - Williams’ solenoid and Plykin’s attractor [1] are well- known hyperbolic
attractors. Plykin’s sphere is obtained by the transformation of the disc domain into itself where
S? - a unitary disc in R?. Then f : T + T, f(x,y,2) = (cosysin ¢, sin psin ¢, cos ¢), where k>2
determines the compression "by thickness", sets the disc as a subset T C R3. Let there be a smooth
family of non - linear controlled systems of ordinary differential equations & = F'(x, p,u),z € M C
R" €L C Rf\u e U C R",F € C™ depending on the vector of controlling parameters u.
Suppose that it is necessary to stabilize unstable limiting cycle of the period T', which is the solution
of the family when u = 0. Let the system have a regular attractor when the parameters are of the
same value v = 0. Then the stabilization of the cycle is carried out by means of the feedback with
the delay being in the form of u(t) = K(z(t — T) — x(t)), where K - is the matrix of coefficients [2].

The use of the Pyragas method for the formation of regular dynamics in autonomous hyperbolic
attractors. Let us take into consideration the system of the type [1]:

X = —2eY 20 (cos(wy cos wit) — X sin(wsg coswit))+
kY Qo (cos(we sinwit) — X sin(wg sinwi t)) sinws t,
Y = 2Y Q4 (X cos(wg coswit) + 2711 — X2 4 Y?2) sin(ws coswit))—
ko (X cos(wasinwit) + 271 (1 — X2 + Y?) sin(wy sinwyt)) sinwit + F(K, 7),
01 = (2X cos(wg coswit) + (1 — X2 — Y?) sin(wg coswit)) (1 4+ X2 +Y2) 72
Qp = (—2X sin(wg sinwit) + (1 — X2 — Y?) cos(wa sinwit))(1 + X2+ Y?2)~1 4 271/2,

Here X, Y - dynamic variables, € and k - coefficient of connection, w2 = (7/2,7/4) -inherent
frequency oscillations, Fy, = K[Y(t —7) =Y (t)] .

Result. The K = 0 hyperbolic chaotic state, corresponds to K = 1.8 and 7 = 1.8 the stable state,
corresponds to the chaotic state.
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Emergence of Non-ergodic Dynamics Representations
of Simple Compact Connected Lie Groups

Berger P.

French National Centre for Scientific Research
berger@math.univ-parisi 3. fr

Recently wild dynamics were shown locally typical of in the sense of Kolmogorov. These dynamics
are wild in the sense that they seem difficult to approximate by a finitely ergodic system. In order to
quantify this complexity, I introduced the emergence £(¢) as the minimal number N of probability
measures (4;)1<i<n such that the empirical function  — Ej(z) := 1 Zle Ofi(z) satisfies:

limsup/ dw, (Bx(z),{p; : 1 <i < N})dLeb < €,
k—00 M
where dyy, is the 1-Wasserstein metric on the space of probability measures.

I will present a program which aims to 1. Show the typicality of dynamics with high emergence,
2. Describe dynamics with high emergence using a dictionary with the notion of entropy.

Such a program will be illustrated by recent achievements in several collaborations.

Partially Hyperbolic Diffeomorpihsms on 3-manifolds
Bonatti C.

French National Center for Scientific Research
bonatti@u-bourgogne. fr

A diffeomorphism f of a closed 3 manifold M is partially hyperbolic if the tangent bundle T'M
splits in three 1-dimensional D f-invariant bundle, TM = E*+ E°+ E", the bundle E? is uniformly
contracted, E* is uniformly expanded, and E° is dominated by F* and dominates E°. The classical
examples are

e the skew product of an Anosov diffeomorphism of the torus T? by circle diffeomorphisms,
e perturbations of a linear Anosov diffeomorphism of T® with 3 real eigenvalues of distinct moduli
e the perturbations of the time one map of an Anosov flow.

In 2000 E. Pujals proposed informally that these three classes of examples could be the general
behavior of partially hyperbolic diffeomorphisms, leading to was has been known as Pujals conjecture.
Many recent new examples disprove this conjecture, providing many unexpected behaviors. However
with Jinhua Zhang we recently proved the conjecture under the assumption that the center bundle
E€ is topologically neutral: a small segment tangent to E° has all its iterates remaining small.

In this talk I will give a quick survey of the recent examples, and present some of the arguments
of our proof.
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Interpolation for Determinantal Point Processes
Bufetov A.I

CNRS, Steklov, IITP RAS
bufetov@mi-ras.ru

Consider a Gaussian Analytic Function on the disk, that is, a random series whose coefficients
are independent complex Gaussians. In joint work with Yanqgi Qiu and Alexander Shamov, we show
that the zero set of a Gaussian Analytic Function is a uniqueness set for the Bergman space on the
disk: in other words, almost surely, there does not exist a nonzero square-integrable holomorphic
function having these zeros. The key role in our argument is played by the determinantal structure
of the zeros, and we prove, in general, that the family of reproducing kernels along a realization of
a determinantal point process generates the whole ambient Hilbert space, thus settling a conjecture
of Lyons and Peres. In a sequel paper, joint with Yanqgi Qiu, we study how to recover a holomor-
phic function from its values on our set. The talk is based on the preprints arXiv:1806.02306 and
arXiv:1612.06751

Controllability of Dynamic Inequalities and its Stability
Davydov A. A.

The National University of Science and Technology MI1SiS
Lomonosov Moscow State University and Viadimir State University
davydov@mi.ras.ru

The concept of rough dynamical systems was introduced by A.A. Andronov and L.S. Pontryagin
[1]. They analyzed family of phase curves of a C''-vector field on a two-dimensional disk when the
field does not vanish at the disk boundary and has no tangency with it and found the necessary and
sufficient conditions such that for a field satisfying these conditions and any vector field sufficiently
C' -close to it the families of phase curves of these fields are translated one into another by a
homeomorphism being close to the identity. Later on M.Peixoto proved that rough vector fields are
generic on any closed orientable surface |2, 3|.

An analogous problem for dynamic inequalities was formulated in [4]. Such a problem naturally
includes analysis of local controllability properties. Structural stability of generic control systems
on closed orientable surfaces was proved in [5] (see also [6]), and for generic dynamic inequality this
problem is open up to now, while the stability of local controllability properties of generic dynamic
inequality with locally bounded derivatives is already proved [7] and structural stability of generic
simplest dynamic inequality on S2 is also proved [8§].

We discuss these results and some related ones in other areas of mathematics.

Acknowledgments. The studies are supported by the Ministry of Education and Science of
the Russian Federation, project no. 1.638.2016/FPM.
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Phase Space Topology and Emergence of Chaos
in First-order Mean Motion Resonances

Efimov S.!, Sidorenko V.12

Y Moscow Institute of Physics and Technology, ?Keldysh Institute of Applied Mathematics
efimov.ss@phystech.edu

We consider a circular restricted tree body-problem — a system consisting of a star, a planet,
and an asteroid near a first-order mean motion resonance. It means, that orbital periods of planet
and asteroid are in relation 7, : T, = n : (n £ 1). Long-term dynamics of the asteroid in this case is
characterized by two integrals of motion: Hamiltonian value h and parameter o2 = 1 — (1 —e?) cos? i
arising from the rotational symmetry of the problem (e and i are eccentricity and inclination). We
concentrate our attention on the region e < ¢ < 1 and show that from this part of the phase space
the chaos in the system emerges. Dynamics in considered case is described by Hamiltonian, which
has a universal form for all n:

(I)2
H((p,fb;:):,s_ly) = 7+3:cosg0+ysin<p+cos2<p. (1)

Here (p, ®) and (:c, 8_1y) are pairs of canonical variables, r ~ a,ecosw, y &~ —apesinw, € — small
parameter, o, — constant coefficient, and w — argument of pericenter.

Pairs of variables (¢, ®) and (x,y) form two subsystems — fast and slow respectively — with
significant difference in characteristic timescales due to € in canonical counterpart of . This allows
to construct phase portraits of slow subsystem using averaging method. States corresponding to
separatrices and stationary points of fast subsystem form a curve I' on the slow subsystem’s phase
plane. The topological structure of slow phase portraits can be described by intersections of I' with
boundaries between different trajectory families (Fig. 1). Then bifurcations in phase portraits are
revealed using h as a parameter (Fig. 1). General structure of phase portraits and bifurcations hj-hy,
hg are preserved without the condition o < 1 for all resonances except 1 : 2.

Crossing of I' by a trajectory cause a small quasi-random jump of a phase point [1]. Multiple
passages through I' thus lead to the so-called adiabatic chaos: all trajectories crossing I' mix with
each other and form a chaotic region (Fig. 2) with a characteristic time of diffusion =3 [1].
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Figure 1: Slow phase portrait and intersection points V, M, I, K of I' with boundary trajectories
(left), bifurcation diagram showing positions of intersection points (right). Here  is parametrization
of I x = cosp(h + cos2p —2), y =sinp(h+ cos2p + 2)
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Figure 2: Chaotic region on the plane of slow variables (left). Object 1999CY73 from the outer Solar
System filling the chaotic region during 15 Myr of evolution (right)
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()-Stability of C''-Smooth Skew Products of Interval Maps and
Dense Stability as a Whole of a Family of Fibers Maps

Efremova L. S.

National Research Lobachevsky State University of Nizhni Novgorod
lefunn@gmail.com

We give the survey of properties of C''-smooth Q-stable skew products of maps of an interval
(with respect to homeomorphisms of skew products class) [1] — [3].

First of all, we describe the proper subspace of the space of C'-smooth skew products of maps
of an interval which contains the set of C''-smooth Q-stable skew products.

Then, we prove nondensity of the set of C'-smooth §-stable skew products in the mentioned
above subspace.

After that, we study the boundary of the set of C'-smooth §2-stable skew products in the space
of all C'-smooth skew products of maps of an interval.

In particular, we consider the set of C'-smooth skew products of maps of an interval with densely
stable as a whole (in C'*-topology) family of fibers maps and prove the criterion of C''-approximability
of maps with densely stable as a whole family of fibers maps with use of {2-stable skew products of
maps of an interval.
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Cantor Sets with High-dimensional Projections
Frolkina O.D.

M. V. Lomonosov Moscow State University
olga-frolkina@yandex.ru

L. Antoine constructed a Cantor set in R? whose projections coincide with those of a regular
hexagon [2, 9, p.272; and fig.2 on p.273]. By K. Borsuk [5], there exists a Cantor set in R¢ such
that its projection onto every hyperplane contains a (d — 1)-dimensional ball, or equivalently, has
dimension (d — 1). J. Cobb [6] gives an example of a Cantor set in R® such that its projection onto
every 2-plane is 1-dimensional (for higher-dimensional extensions, see e.g. [7], [3]). Cobb’s method
is rather sophisticated; the resulting Cantor set (as also the sets from [3], [7]) is tame in the following
sense.
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Definition 1. A zero-dimensional compact set K C R"™ is called tame if there exists a homeomor-
phism h of R™ onto itself such that h(K) is a subset of a straight line in R"™; and it is called wild
otherwise.

In R? each zero-dimensional compactum is tame [1, 75, p. 87-89|. L. Antoine constructed a
Cantor set in R? which is now widely known as Antoine’s necklace [1, 78, p. 91-92] and proved that
it is wild [1, Part 2, Chap. III|. Similar construction gives uncountably many inequivalent Cantor
sets in R3 [9]; they all are called Antoine’s necklaces.

Next two theorems provide a partial answer to the Cobb’s question [6, p.126].

Theorem 1. There exists an Antoine’s Necklace A in R® such that for each plane II C R3, the
projection dim prr(A) is a one-dimensional connected compactum.

(Here pry : R® — 1II is the orthogonal projection onto a plane IT C R3.)
Next result implies that no projection of an Antoine’s necklace can be (covered by) a set home-
omorphic to a finite graph.

Definition 2. A subset X C RN homeomorphic to a k-cube I* is called flat if there exists a
homeomorphism h of RN onto itself such that h(X) is a k-simplex.

Theorem 2. Let X C R"™ be a Cantor set. Suppose that for some m-dimensional plane 11, there
ezists a countable family of subsets Y1,Ys, ... CII such that each Y; is a flat cell in 11, dimY; < m—1,
and pri(X) CY1UYoU.... Then X is tame in R™.

In fact, each Cantor set in R? can be modified so that all its projections are 1-dimensional.

Theorem 3. Let X C R3? be any Cantor set. For each € > 0 there exists a homeomorphism
h: R® = R3 such that d(h,id) < e and for each plane I C R3, we have dim pr(h(X)) = 1.

Finally, we find a new tameness condition which improves |4, Thm. 3E| (compare also with [8,

Cor. 2|):

Theorem 4. Let X C R™ be a Cantor set. Suppose that there exists a plane II such that dimIl €
{1,2,n —2,n — 1} and dimpr(X) = 0. Then X is tame.

References

[1] L. Antoine, Sur ’homéomorphie de deux figures et de leurs voisinages. Theses de I'entre-deux-
guerres, vol. 28, 1921. http://eudml.org/doc/192716

[2] L. Antoine, Sur les voisinages de deux figures homéomorphes, Fund. Math. 5 (1924) 265-287.

[3] S. Barov, J.J. Dijkstra, M. van der Meer, On Cantor sets with shadows of prescribed dimension,
Topol. Appl. 159 (2012) 2736-2742.

[4] W.A. Blankinship, Generalization of a construction of Antoine, Ann. Math. (2) 53 (1951) 276—
297.

[5] K. Borsuk, An example of a simple arc in space whose projection in every plane has interior
points, Fund. Math. 34 (1947) 272-277.

[6] J. Cobb, Raising dimension under all projections, Fund. Math. 144 (1994), 2, 119-128.

[7] O. Frolkina, A Cantor set in with “large” projections, Topol. Appl. 157 (2010), 4, 745-751.

[8] D.R. McMillan, Jr., Taming Cantor sets in E™, Bull. Amer. Math. Soc. 70 (1964) 706-708.

[9] R.B. Sher, Concerning wild Cantor sets in E3, Proc. Amer. Math. Soc. 19 (5) (1968) 1195-1200.

21



Motion Separation in a Neighborhood of a Semistable Cycle
Glyzin S.D.!, Kolesov A.Yu.!, Rozov N.Kh.?

L' P.G. Demidov Yaroslavl State University,
2 M. V. Lomonosov Moscow State University
glyzin.s@gmail.com, kolesov@uniyar.ac.ru, fpo.mgu@mail.ru

Let’s consider an arbitrary C'*° system F' of ordinary differential equations in R™, n > 2, that
has a periodic trajectory Lg of the type of a simple saddle-node. Further, we introduce the two-
dimensional system Fj that is the restriction of the original system F' to the center manifold W€¢(Lg)
of the cycle Lg. We are interested in the simplest form to which the vector field FO can be reduced
in some sufficiently small neighborhood U C W*€(Lg) of the cycle Ly. We proof, that there exist
local coordinates (r,v) : |r| < rg, 7o = const > 0, 0 < ¢ < 27 (mod 27), in U in which the field Fj
acquires the form

Foy = (r> 4+ ar®)0/0r + 0/,

where « € R is some constant. Therefore, we obtain a generalization of the well-known result due to
Takens [1] on normal forms of scalar autonomous equations in a neighborhood of the zero equilibrium
to the periodic case.

The so-called “blue sky catastrophe” is one possible application of the obtained results. By [2],
the investigation of this bifurcation is essentially based on the existence of the change of variables
reducing system F' on the center manifold W¢(Lg) to the normal form.
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The Ogasa Number
Vago G.

University of Burgundy
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Abstract: Given a manifold M, we look for the Morse functions with the “simplest” regular levels.

For this purpose, Ogasa introduces the following invariant. First of all, for any fixed Morse
fonction f of M, one computes the sum of the Betti numbers of every regular level, then one keeps
in mind only the maximum of these numbers. Hence, for all fixed f, this value depends on M and of
f. Next, one minimises, letting f vary among all possible Morse functions of M. The value obtained
from this minimax procedure depends only on the initial manifold M. It is the Ogasa invariant.

In dimension 2, the computation of this invariant is straightforward.

As for dimension 3, together with Michel Boileau (AMU, Marseille, France) we have understood
what this dynamical invariant measures, and we have shown how it is related to other topological,
geometric and algebraic invariants of the underlying manifold.

In higher dimension, the question is open.
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In the talk, I will start with some examples of computation of this invariant, in order to become
acquainted with it. Then I will focus on dimension 3: with the help of the obtained results, I shall
explain why this dynamical invariant is so interesting.

Examples of Discrete Lorenz Attractors in Three-Dimensional Maps.
Gonchenko A.S.!, Samylina E. A.?!

! Lobachevsky State University of Nizhny Novgorod
National Research University Higher School of Economics, Nizhny Novgorod
agonchenko@mail.ru, samylina_ evgeniya@mail.ru

In this talk we discuss dynamical properties and bifurcations of the so-called discrete Lorenz
attractors [1,2]. Since these attractors appear as result of rather simple bifurcation scenarios [2,3],
they can be often observed in various models (in particular, in those ones which are described
by three-dimensional maps). We consider two such models: three-dimensional Hénon maps and
nonholonomic models of Celtic stone.

Acknowledgments. This research is partially supported by RSF-grant No. 18-71-00127.
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On New Type of 1:4 Resonance in the Conservative Cubic Hénon Maps
Gonchenko M. S.

Universitat Politécnica de Catalunya
marina.gonchenko@upc.edu

We study the 1:4 resonance for the conservative cubic Hénon maps Cy with positive and neg-
ative cubic term. These maps show up different bifurcation structures both for fixed points with
eigenvalues i and for 4-periodic orbits. While for C_ the 1:4 resonance unfolding has the so-called
Arnold degeneracy (the first Birkhoff twist coefficient equals (in absolute value) to the first resonant
term coefficient), the map C4 has a different type of degeneracy because the resonant term can
vanish. This new type of degeneracy has not been studied before. In this case, non-symmetric
points are created and destroyed at pitchfork bifurcations and, as a result of global bifurcations, the
1:4 resonant chain of islands rotates by m/4. For both maps several bifurcations are detected and
illustrated. This is a joint work with S. Gonchenko, I. Ovsyannikov and A. Vieiro.
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On Bifurcations of a 3-parameter Family of Two-dimensional Diffeomorphisms
with a Quadratic Homoclinic Tangency to a Nonhyperbolic Saddle at ;1 =0

Gordeeva O. V., Lukyanov V.I.

Lobachevsky State University of Nizhni Novgorod
olga.gordeeva@inbox.Tu

We consider a C"-diffeomorphism fy (r > 4), satisfying the following conditions:

A) fo has a fixed point O, which is a nonhyperbolic saddle with the multipliers Ay = A, where
0 < |A| <1, A2 =1, and with the second Lyapunov value I3 > 0.

B) Invariant manifolds W*(O) and W*(O) of O have a (single-round) quadratic tangency at the
points of a homoclinic orbit I'g.

The conditions A)-B) define a codimension 3 locally connected bifurcation surface in the space
of two-dimensional diffeomorphisms, and, hence, for studying bifurcations of fy, we must consider
3-parameter families. Let f,,, where p = (1, p2, pt3), be such a family, which unfolds degenarations,
given by the conditions A)-B).

Theorem 1. Theorem 1 Let U be a sufficiently small neighborhood of the origin in the (u1, 2, 13)-
parameter space. Then in U there is a two-dimensional discontinuous surface S (with the edge on
the curve I': ps = (%)%,,ug = —3(%)%), such that f,, has a (single-round) quadratic homoclinic

tangency either to a hyperbolic saddle fized point or to a saddle-node fixed point, when p € I'].

Theorem 2. Theorem 2 In the (u1, po, p3)-parameter space, in any sufficiently small neighborhood
U(p = 0) there is infinitely many nonintersecting domains Ay, such that at p € Ay the diffeomor-
phism has an asymptotically stable single-round periodic orbit.

1) Boundaries of Ay, correspond to codimension 1 bifurcations for single-round periodic orbits —
saddle-node and period doubling ones.

2) Domains Ay, accumulate to the surface S as k — +oo.

Embedding in Flows of Morse-Smale Cascades
Gurevich E. Ya.

NRU HSE-Nizhnii Novgorod
equrevich@hse.ru

J. Palis found necessary conditions for a Morse-Smale diffeomorphism on a closed n-dimensional
manifold M™ to embed into a topological flow and proved that these conditions are also sufficient
for n = 2. For the case n = 3 a possibility of wild embedding of closures of separatrices of saddles
is an additional obstacle for Morse-Smale cascades to embed into topological flows. We show that
there are no such obstructions for Morse-Smale diffeomorphisms without heteroclinic intersection
given on the sphere S™, n > 4, and Palis’s conditions again are sufficient for such diffeomorphisms.

Acknowledgments. Research is done with financial support of Russian Science Foundation
(project 17-11-01041) and Basic Research Program of HSE in 2019.
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Boundary Deformation Rate in Discrete and Continuous Time
Dynamical Systems

Gurevich B. M.}2, Komech S. A.!

Lnstitute for Information Transmission Problems RAS, 2Moscow State University
bmgbmg2@gmail.com, komech@muail.ru

A relation between the boundary deformation rate in the phase space of a dynamical system and
the metric entropy of the system was first observed in physics literature [3], [4]. Mathematically, this
can be stated as follows. Let {S'} be a dynamical system with discrete or continuous time acting
in a metric space (X, p) and p an {S*}-invariant Borel probability measure. Denote by B = B(z,¢)
the ball of radius € centered at x € X and define the local deformation rate by

1(0:(S'B))
u(B)

where O, (S'B) is the e-neighborhood of S*B. Let h,({S"}) denote the entropy of {S*} with respect
to p. We formulate conditions under which

Ri(B,z,¢) := (1)

lim ~log Re(B,z,2) = hu({5')) @)

(the convergence can be taken in various senses). A general condition is that ¢t depends on ¢ in
such a way that t(¢) — oo and t(g)/loge — 0 as ¢ — 0. If this condition holds, then (2) is true
for some symbolic dynamical systems among which are subshifts of finite type, sofic systems, and
synchronized systems [1], [2]. Moreover, one can assume that ¢ in (1) depends not only on ¢, but
on z, the center of the ball, as well. We impose the following restriction on this dependence: there
exists a function 7 : (0,1) — N such that

lim 7(e) = 0o, lim7(g)/loge =0,
e—0 e—0

lim (&7
e—0 T(&)

for p-almost all z, and
at(e) < t(e,z) < br(e)

for all € and p-almost all z, where a,b > 0 do not depend on € and z. In this situation (2) is also
true (with L}L—convergence).

This result makes it possible to consider a class of continuous time systems. These are suspension
flows over the symbolic systems (maps in the base) mentioned above. If the roof function of the flow
satisfies some regularity condition, then (2) holds except that the measure p should be repalaced by
the flow invariant measure determined by pu.

Acknowledgments. The work was done in IITP RAS and partly supported by the RSF Grant
no. 14-50-00150
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Liouville Type Theorems for Transversally Harmonic Map
Jung S.D.

Jeju National University
sdjung@jejunu.ac.kr

Transversally harmonic map (resp. biharmonc map) from the foliated manifold (M,F) to
(M',F') is a smooth leaf-preserving map such that the transvresal tension (resp. bitension) field
vanishes. The classical Liouville theorem says that any bounded harmonic function defined on the
whole plane must be constant. The classical Liouville theorem has been improved in several cases.
In this talk, we give the Liouville type theorems for transversally harmonic and biharmonic maps
on foliated Riemannian manifolds. That is, under the assumption of non-negative transversal Ricci
curvature of F and nonpositive transversal sectional curvature of F’, any transversally harmonic
map ¢: (M, F) — (M',F') of finite transversal energy is transversally constant, i.e., the induced
map between leaf spaces is constant. And any transversally biharmonic map of finite transversal
bienergy is transversally harmonic.

Multibump Trajectories of Periodic Lagrangian Systems
with Pitchfork Bifurcations

Ivanov A.V.

Saint-Petersburg State University
a.v.1wanov@spbu.ru

We study a Hamiltonian system with the Hamiltonian

2
p 1
H(g,p,et) = = — —p(ct)g* +

1 4
2 2 ’

slowly depending on time. It is assumed the function ¢ to be a periodic C?-function with period 1,
which satisfy the following condition
(Hy): there exist 7, € [0,1),k =1,...,2m such that ¢(1) =0, ¢'(1%) # 0.

Such a system can be considered as the simplest example of the slow-fast systems. The Hamilton’s
equations associated to (1) and considered in the extended phase space are

i=p, p=¢(r)g—¢’ T=c¢.

Thus, (¢,p) can be treated as fast variables and 7 as a slow one. The "slow" manifold I" of this
system is defined by equations p = 0,¢(7)q — ¢ = 0 and consists of one point (¢,p) = (0,0) if
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©(1) < 0 and of three points (0,0), (++/¢(7)) in the case ¢(7) > 0. Such pitchfork bifurcation
occurs each time the parameter 7 passes through the point 7,. When ¢(7) > 0 the origin becomes
a hyperbolic equilibrium of the " frozen" system and possesses the figure-eight separatrix with two
branches.

The system (1) describes the motion of a charged particle in the Earth’s magnetospheric tail
and was extensively studied in many papers. In the present work we show that the sequence of
bifurcations leads to appearence of multi-bump trajectories of the system. In particular we show
that there exists 9 > 0 and a subset &, C (0,&g) such that
1. for any €1 < g the Lebesgue measure leb ((0,e1) \ &) = O (6_0/51) with some positive constant
¢
2. for any € € &, the origin is a hyperbolic equilibrium of the system (1);

3. for any sequence {ax}_, with ax € {—1,0,1} there exists a multi-bump trajectory which stays
during the time between 75 and 719 in a small neighborhood of the origin if a; = 0 or follows one
of the branches of the "frozen" separatrix (ax = £1).

Effective Algebraic Geometry and Control Theory:
Applications to Medical Problems

Jacquemard A.

IMB, Dijon

jacmarQu-bourgogne.fr

The goal of Effective Algebraic Geometry is to solve algebraic and semi-algebraic problems using
constructive proofs and methods.

This way of solving problems is worth of interest in various questions arising in Optimal Control
Theory.

We shall consider here different issues coming from Nuclear Magnetic Resonance Imagery as well
as other challenging medical problems.

In the particular case of NMRI, the understanding of the underlying geometry of the optimality
conditions for the control problem is obtained by solving exactly algebraic and semi-algebraic sys-
tems. These studies have then been completed by numerical computations for different test cases,
and finally confirmed by in vitro and in vivo experiments.

Fejer Sums and the von Neumann Ergodic Theorem
Kachurovskii A. G.

Sobolev Institute of Mathematics, Novosibirsk
agk@math.nsc.Tu

The Fejer sums for periodical measures and the norms of the deviations from the limit in the
von Neumann ergodic theorem both are calculating, in fact, with the same formulas (by integrating
of the Fejer kernels) — and so, this ergodic theorem, in fact, is a statement about the asymptotic
of the growth of the Fejer sums at zero point of the spectral measure of corresponding dynamical
system. It gives a possibility to rework well-known estimates of the rates of convergence in the von
Neumann ergodic theorem into the estimates of the Fejer sums in the point for periodical measures
— for example, we obtain natural criteria of polynomial growth and polynomial degree of these sums.
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And vice versa, numerous in the literature estimates of the deviations of Fejer sums in the point
allow to obtain estimates of the rate of convergence in this ergodic theorem. For example, we obtain
from the results of S.N. Bernstein in harmonic analysis more than hundred years old the estimates of
the rates of convergence in the von Neumann ergodic theorem for many popular in the applications
dynamical systems — with sharp senior coefficient of the asymptotic.

Convergence of Spherical Averages for Actions of Fuchsian Groups
Klimenko A.

Steklov Mathematical Institute of RAS
and National Research University Higher School of Economics
klimenko@mi-ras.ru

The talk is based on the joint work [1] with A. Bufetov and C. Series.

Consider an action of a Fuchsian group G on a Lebesgue probability space (X, u) by measure-
preserving maps T,. Let R be a fundamental domain of G and let G be the symmetric generating
set of G that consists of all elements h such that R and AR share a common side. Assume that R
has even angles, that is, the boundary of the tessellation {gR} is a union of complete geodesic lines.
Finally, for ¢ € L'(X, ) let us define its spherical averages as follows:

Sn(p) = #{g |g| Z poTy,

gl |=n
where |g| is a norm of g € G with respect to the generating set Gy.

Theorem. Let G be a non-elementary Fuchsian group G and suppose it has a fundamental domain
R with even corners and satisfying a technical condition (in particular, it holds for any domain with
at least 5 sides).

Let G act on a Lebesgue probability space (X, i) by measure-preserving transformations T,. De-
note by IG% the o-algebra of sets invariant under all maps Ty, 4,, 91,92 € Go, where Go is defined
above. Then for any function f € Llog L(X, ), the sequence (Sa,(f)) converges as n — oo almost
surely and in L' to the conditional expectation E(f]IGg) with respect to the o-algebra IGg'

The proof is based on the construction of the Markov coding for the group G with the following
symmetry property. We construct a topological Markov chain with a finite set of states =, two maps
v,w: = — Gp, and subsets =, =g C = such that the map

(i() — i == in—l) — w(in—l)’Y(in—Q) oo ’7(7’-0)

is a bijection from the set of all admissible sequences of states with ig € =g, i,,_1 € Zg to the sphere
{lg| = n} in the group G. The symmetry property states that there exists an involution ¢: & — =
such that

e it reverses the time of our Markov chain, i. e. transitions j — k and ¢(k) — ¢(j) are admissible
simultaneously;

e the identities w(i(k)) = w(k) ™! and w(5)y(k) = v(¢(5)) "tw(k) hold for all k and all admissible

transitions k — j respectively;

e and therefore, if an element g € G corresponds to the sequence (ig — - -+ — ip_1), the inverse
element g~! corresponds to the sequence ((i,_1) — - -+ — (ig)).
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Hochschild Cohomology via Morse Mathching and Anick Resolution
Kolesnikov P., AlHussein H.

Sobolev Institute of Mathematics, Russia
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Homological methods allow us to get important information about the structure of an algebra.
For associative algebras, Hochschild cohomologies play an important role in structure and repre-
sentation theory. Finding the Hochschild cohomology group H™(A, M) of a given algebra A with
coefficients in a given A-bimodule M is often a difficult problem. In order to solve this problem one
needs a long exact sequence starting from A, a resolution of A. The most natural bar-resolution is
easy to construct but it is too bulky for computations. Another approach was proposed by David
J. Anick in 1986 [1], where it was built a free resolution for associative algebra which is homotopy
equivalent to the bar-resolution. The Anick resolution was also used to find Poincare Series. Com-
putation of the differentials in the Anick resolution according to the original algorithm described in
[1] is extremely hard. In order to make the computation easier, one may use the discrete algebraic
Morse theory based on the concept of a Morse matching defined in [3, 4|. This concept was used
in geometry first, then it became applicable in algebra. In the present work, we apply the Morse
matching theory to find the Anick resolution and calculate the groups of Hochschild n-cohomologies
of the Manturov group (which has applications in Dynamical Systems|6]), Weyl algebra and chinese
algebra.
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Laplacians on Generalized Smooth Distributions
Kordyukov Yu. A.

Institute of Mathematics, Ufa Federal Research Centre RAS, Russia
yurtkor@matem.anrb.ru

We will discuss the Laplacians associated with an arbitrary generalized smooth distribution on
a smooth manifold M. Roughly, smooth distributions are smooth assignments of vector subspaces
D, of T, M for every x € M. These subspaces are not required to have constant rank. It is more
convenient to view such a distribution in terms of its dynamics, focusing on the module D of smooth
vector fields on M tangent to it. More precisely, we define a (generalized) smooth distribution on
M as a locally finitely generated C°°(M )-submodule D of the C°°(M)-module X,(M) of smooth
compactly supported vector fields on M. If the distribution has constant rank, D is a subbundle
of the tangent bundle 7'M and the associated C°°(M)-module D is the space of smooth sections of
this bundle: D = C°*°(M, D). In this case D is projective.

The fiber of the distribution D at € M is the finite dimensional vector space D, = D/I,D,
where I, = {f € C®(M) : f(z) = 0}. We define a Riemannian metric on D as a family of
inner products ( , ), on D,, depending smoothly on € M in some sense. We prove that such a
Riemannian metric exists for an arbitrary distribution D.

Given a smooth distribution D on a smooth manifold M, a Riemannian metric on D and a positive
density p on M, we construct the associated horizontal Laplacian as follows. First, we define the
horizontal differential to be the operator dp : C°(M) — C°(M,D*) given by dp = ev* o d, where
d:C®(M) — QL(M) is the de Rham differential and ev* : QL(M) — C°(M,D*) is induced by
the evaluation maps ev, : D, — T,.M, x € M. The horizontal Laplacian of D is the second order
differential operator Ap = dj, odp : C(M) — CX(M), where d}, : C°(M,D*) — C*(M) is
the adjoint of dp with respect to natural inner products on C°(M) and C°(M,D*) defined by
the Riemannian metric on D and the density u. We show that, if M is compact, the horizontal
Laplacian Ap as an unbounded operator on the Hilbert space L?(M, ) with domain C*°(M) is
essentially self-adjoint.

A distribution D is called involutive, if it is closed under Lie brackets: [D, D] C D. An involutive
smooth distribution is called a singular foliation. I. Androulidakis and G. Skandalis constructed a
longitudinal pseudodifferential calculus and the corresponding scale of longitudinal Sobolev spaces
for an arbitrary singular foliation on a compact manifold.

For a smooth distribution D on a compact manifold M, consider the smallest involutive C*°(M)-
submodule F of X (M), which contains D. It is generated by the elements of D and their iterated
Lie brackets [X7,...,[Xk_1, Xk]] such that X; € D, i =1,...,k, for every k € N. Assume that F
is a singular foliation (that is, it is finitely generated). We prove that the horizontal Laplacian Ap
is longitudinally hypoelliptic in the scale of longitudinal Sobolev spaces associated with F.

This is joint work with I. Androulidakis.

Acknowledgments. [t is supported by the Russian Foundation of Basic Research, grant no.
16-01-00312
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On Asymptotic Behavior of Solutions for Inclusions
with Causal Multioperators

Kornev S.
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The study of systems governed by differential and functional equations with causal operators,
which is due to Tonelli [1] and Tychonov [2], attracts the attention of many researchers. The term
causal arises from the engineering and the notion of a causal operator turns out to be a powerful
tool for unifying problems in ordinary differential equations, integro-differential equations, functio-
nal differential equations with finite or infinite delay, Volterra integral equations, neutral functional
equations et al. (see the monograph [3]).

The main ideas of the method of guiding functions were formulated by Krasnosel’skii and Perov
in the fifties (see [4]). In the recent years the method of integral guiding functions became one of
the most significant directions in the developments of the guiding functions theory (see, e.g., [5]).

In the present talk we apply the method of non-smooth integral guiding potentials to the in-
vestigation of the asymptotic behavior of solutions for a differential inclusion with the multivalued
causal operator.

Other aspects of the method of guiding functions and its applications, as well as the additional
bibliography, may be found in the recent monograph |6].

Acknowledgments. The research is supported by the Ministry of Education and Science of
the Russian Federation (project No. 1.3464.2017/4.6), the Russian Fund for Basic Research (project
No. 16-01-00386) and the joint Taiwan MOST - Russia RFBR (project No. 17-51-52022).
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Chaotic Regimes in the Ensemble of FitzhHugh-Nagumo
Elements with Weak Couplings

Korotkov A. G., Kazakov A.O., Levanova T. A., Osipov G. V.

Control Theory Department, Institute of Information Technologies,
Mathematics and Mechanics, Lobachevsky University
koralg81@gmail.com

We study the peculiarities of chaotic dynamics in the phenomenological model of ensemble of
two FitzHugh-Nagumo elements with weak excitatory couplings. This model was recently proposed
as a suitable model for describing the behaviour of two coupled neurons. A rich diversity of different
types of neuron-like behaviour, including regular in-phase, anti-phase, sequential spiking activities
and also chaotic activity was observed in this model. We focus on chaotic bursting and chaotic
spiking neuron-like activity in this paper. We study in details bifurcation scenarios of the emergence
and destruction of these types of neuron-like activity

On the Dynamics of the Pendulum Equation with
Asymmetric Quasi-periodic Perturbations

Kostromina O. S.

Lobachevsky State University of Nizhny Novgorod
0s.kostromina@yandez.ru

Quasi-periodic two-frequency perturbations of an asymmetric pendulum type equation close to
an integrable one are considered. The structures of the resonance zones are studied. The conditions
for the existence of resonance quasi-periodic solutions (two-dimensional resonance tori) are found.

Acknowledgments. This work was partially supported by RFBR, No 16-01-00364 and No
18-01-00306.

On the Dynamics of Rough 3-diffeomorhisms
with 2-dimensional Expanding Attractor

Kruglov E. V.

Lobachevsky State University of Nizhny Novgorod
kruglov19@mail.ru

The results of this paper were obtained in collaboration with V.Z Grines and O.V. Pochinka.

Let f : M3 — M? be a structurally stable diffeomorphism such that its nonwandering set
contains an expanding orientable attractor A of topological dimension 2. We denote the class of such
diffeomorphisms by G. A point € A is called boundary if one of the connected components of the
set W*(x)\z does not intersect with A, denote this component by W*?(z). The set 'y of all boundary
points of the set A is nonempty and consists of finite number of periodic points that are divided
into associated couples (p, q) of points of the same period so the 2-bunch By, = W"(p) U W*(q) is
a boundary achievable from inside of the connect component of the set M\A. Then the following
facts take place: (1) the ambient manifold M3 is homeomorphic to the 3-dimensional torus T%; (2)
for each associated couple (p,q) of boundary points there exists a natural number k,, such that
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the set of nonwandering points of diffeomorphism f contains kp, periodic sources ay, ..., ag,, and
kpg—1
kpq — 1 periodic saddle points P, ..., Py, 1 alternate on the simple arc l,,, = Wsh (pu U Ws(p)u
i=1

1=
kpq
U W*(a;) UW=?(q) [1]. Denote the separatrices £, = W*(Pi_1)NW*(;), £5% = W*(P)NW*(ey),
i=1
i=1,2,...,kpg; Po = p, Py,, = q and m,, is period of the separatrices 0, 0. We are called the
union F = (7 Ua; UL 1 = 1,2, ..., kpq, is a associated with the source a; frame of two separatrices.

Theorem 1. Let f € G, (p,q) is associated pair of boundary points p, q. Then separatrises €3,
03 and frames F®, i = 1,2, ..., kpq, are tamely embedded.

As a; is a hyperbolic point then the diffeomorphism f"i [y (4,) is topologically conjugated with
the homothety A : R® — R? defined by A(z1,z2,23) = (221,272, 223) by means a homeomorphism
ha, : W¥(a;) — R3. Let J3 = w(Fs"%) where 7 : W¥(a;;) — S? x S, Then J is a frame of two
circles in S% x S, which we call associated with the source «;.

Theorem 2. For every periodic source oy of a diffeomorphism f € G the associated with «; frame
of circles J5' is trivial.
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On Moduli for Gradient Surface Height Function Flows
Kruglov V. E., Pochinka O. V.
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Two flows are called topologically equivalent if there is a homeomorphism sending trajectories
of one flow into trajectories of another one preserving directions of trajectories. Two flows are
called topologically conjugate if they are topologically equivalent by means of the homeomorphism
preserving time of moving along trajectories.

In 1978 J. Palis [1]| invented continuum topologically non-conjugate systems in a neighbourhood
of a system with a heteroclinic contact (moduli). W. de Melo and C. van Strien in 1987 [2] described a
diffeomorphism class with a finite number of moduli: a chain of saddles taking part in the heteroclinic
contact of such diffeomorphism includes not more than three saddles. Surprisingly, such effect does
not happen in flows. Here we consider gradient flows of the height function for an orientable surface
of genus g > 0. Such flows have a chain of 2¢g saddles.

In this research we speak about the class G' of C?-smooth gradient flows f* : Sy — Sy induced
by gradient vector field of the height function for vertical orientable surface S; of genus g > 0.
The non-wandering set of such systems consists of a finite value of hyperbolic fixed points: a single
source, a single sink and a finite number of saddle points constructing a chain with each element
connected with the next one by two saddle separatrices.

The main result of our work is the next theorem
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Theorem. Any flow f': Sy — Sy from the class G has ezactly 2g — 1 moduli.

Acknowledgments.  The research was supported by Russian Science Foundation, project
17-11-01041.
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First Steps of the Global Bifurcation Theory in the Plane
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The talk is devoted to a part of a new theory: global bifurcations in the plane. The central
question is: who bifurcates. The answer, obtained together with N. Goncharuk, may plan the key
role in many bifurcation problems in the future.

Implementation of Smale—Williams Solenoids
with Different Expansion Factors

Kruglov V.P.!, Kuznetsov S.P.!?

! Kotelnikov Institute of Radioengineering and Electronics of RAS, 2 Udmurt State University
kruglovyacheslav@gmail. com

We propose a new class of systems demonstrating Smale-Williams solenoids. The principle of
their constructing is based on using self-oscillatory subsystems with resonant transfer of oscillatory
excitation between them. Smale-Williams solenoids arize due to the difference in the frequencies
of small and large (relaxation) oscillations by an integer number of times being accompanied by
phase transformation according to an expanding circle map. We introduce three physical systems
of proposed class.

At first we discuss a model of a new class that consists of two weakly coupled Bonhoeffer—van der
Pol oscillators with periodically modulated parameters. Oscillators alternatively undergo smooth
transition from small self-oscillations to relaxation self-oscillations. Depending on parameters, the
Smale—Williams solenoids with different expansion factors M of the angular variable appear in phase
space of the system. If one of the parameters is zero, the model becomes a system of coupled van
der Pol oscillators, in which Smale-Williams solenoids also arise. The equations are:

i=u, u=(f(:+31) -2 )u—2+K+e(y—2a), 1)
g):v, ’U:(f(%—%)—yz)ﬂ—y—FK—F&(fE—y),
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where T is modulation period, € is coupling parameter, K is constant parameter. Function f ()
describes modulation:

a, ifo0<r<m,
f(r)=fr+1)= (a_c):r%, if 1 <7 <M, (2)
%, if <7<l

We also introduce another model which is physically similar to the previous system. It is com-
posed of two weakly coupled FitzHugh—Nagumo neurons with periodical modulation of parameters:

p=f(pry)e—gt—utely—2), d=ar—bu+l,

: ) 3
J=f(f-1)y—3—vt+elx—y), v=ay—bv+1, (3)

where T is modulation period, € is coupling parameter, I, a and b are constant parameters. Function
f (t) is described by (2).

The third example is composed of two coupled Froude pendulums placed on a common shaft
rotating at constant angular velocity with braking by application of frictional force to one and other
pendulum turn by turn periodically:

i=u, 0= (a—d(t)—bu*)u—sinz+p+e(v—u),

Y=, 7.):(CL*d(t‘i‘%)*b'UQ)’U*Siny+/I/+€(U*’U), )

where T is modulation period, € is coupling parameter, u, a and b are constant parameters. Function
d (t) describes periodic dumping:

0, t < Ty,
dit)=< D, To<t<T/2, d(t+T)=dt). (5)
0, T/2<t<T.

Proposed systems were studied numerically. It was demonstrated that Smale-Williams solenoids
with different expanding factors appear in Poincaré stroboscopic maps on specific intervals of pa-
rameter values. The hyperbolicity of chaotic attractors was confirmed with the help of a test based
on numerical evaluation of angles of intersections of stable and unstable manifolds of attractor with
verification of the absence of tangencies between these manifolds.

Acknowledgments. The work on models (1) and (3) was supported by the Grant of Russian
Science Foundation No. 17-12-01008. The work on model (4) was supported by the Grant of Russian
Science Foundation No. 15-12-20035.
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Controllability and Infinite Invariant Measures
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In the recent paper by D. Burago, S. Ivanov and A. Novikov, — A survival guide for feeble fish —,
it has been shown that a fish with limited velocity can reach any point in the (possibly unbounded)
ocean provided that the fluid velocity field is incompressible, bounded and has vanishing mean
drift. This result extends some known global controllability theorems though being substantially
nonconstructive. We give a fish a different recipe of how to survive in a turbulent ocean, and show its
relationship to structural stability of dynamical systems by providing a constructive way to change
slightly the velocity field to produce conservative (in the sense of not having wandering sets of
positive measure) dynamics. In particular, this leads to the extension of Ch. Pugh’s closing lemma
to incompressible vector fields over unbounded domains. The results are based on an extension of
the Poincaré recurrence theorem to some o-finite measures and on specially constructed Newtonian
potentials.

Also, we provide a discrete version of our results and prove that systems with small mean drifts
satisfy many properties of ones with a probability invariant measure.

On Existence of Expanding Attractors of Endomorphisms of 2-torus
Kurenkov E. D.

NRU HSE — Nizhny Novgorod
ekurenkov@hse.ru

In 1967 S. Smale proposed a method how to construct hyperbolic codimension one attractors
and repellers of diffeomorphisms given on n-torus. The construction was based on Anosov toral
algebraic diffeomorphism. In essence, he described local modification of such automorphism that
leads to so called derived from Anosov diffeomorphism. The nonwandering set of DA-diffeomorphism
consists either of an expanding codimension one attractor and a trivial source or of codimension one
contracting repeller and a trivial sink. In the present talk we show that Smale’s surgery operation
applied to Anosov endomorphism that is k-fold covering map of degree not less than two does not
lead to an A-endomorphism with one-dimensional expanding attractor.

Theorem. Let f: T2 — T2 be A-endomorphism, which is k-fold covering, k > 2. Then f can not
have one-dimensional attractor A, such that:

A is strictly invariant;

e unstable manifold W"(z) of each point x € A does not depend on the trajectory through point
x and forms a one-dimensional curve, which is not closed;

o the following equality holds | J ., W"(x) = A and, A forms a lamination locally homeomorphic
to the product of a Cantor set with an interval;

e attainable boundary of any connected component of the set T2\ A consists of the finite number

of leafs of A.
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Nonalternating Hamiltonian Lie (super)Algebras in Characteristic Two
and Related Topics (Deformations of Lie algebras,
Non-degenerate Derivations and p-Groups)
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Simple finite-dimensional Lie algebras of characteristic p > 0 naturally arise in the theory of p-
groups and pro-p-groups, as the Lie algebras associated with the filtrations {G;} such that (G;,G;) C
Gitj. For important classes of groups, under suitable filtration, Lie algebras form a positive part
of the twisted affine Lie algebra, L = L(g,a,m) = @i>08; ® t', where g = ®iez,, 07 1s a grading
mod m of a simple Lie algebra over a field of characteristic p. For the theory of p-groups of
finite coclass, simple Lie algebras over a field of characteristic p that admit non-singular derivation
are of interest [1], [2]. When p > 3, all such simple Lie algebras were found in [3]. These are
special and Hamiltonian Lie algebras of vector fields corresponding to differential forms with a
nonzero cohomology class. Note that the algebra of functions must be replaced by an algebra of
divided powers O, (F)(see [4]) that corresponds to some generalized flag F. In the case of a field
of characteristic 2 one can construct a large class of simple generalized Hamiltonian Lie algebras
corresponding to symmetric differential forms. The number of variables can also be odd. The class
of Hamiltonian Lie algebras of characteristic 2 with the simplest symmetric Poisson bracket was
constructed in 1993 by Lei Lin [5]. The authors of [6] - [8] noted that this bracket is obtained from
the classical Poisson bracket of the Hamiltonian Lie superalgebra and proposed the construction
of symmetric differential forms. In [9] the invariant construction of the complex of symmetric
differential forms in characteristic 2 was given and some program of investigation was proposed.
The authors have obtained all invariants of symmetric Hamiltonian differential forms with constant
coefficients with respect to parabolic subgroup of GL(V') corresponding to flag F. In particular, it
was shown that there exists a basis of V' coordinated with flag F such that a symmetric Hamiltonian

form has a matrix diag(Mo, ..., My, Mi,..., My, 1) where My = <0 1> and M; = <0 1) The

10 1 1)
authors have proved that in the case when the heights of the variables are greater than 1, each filtered
Lie algebra associated with a graded non-alternating Hamiltonian algebra is given by a symmetric
Hamiltonian differential form with non-constant coefficients. It has been proven that such forms can
be reduced to Hamiltonian forms with constant coefficients by an admissible change of variables.
Thus, in the case when variables are of large enough heights the graded nonalternating Hamiltonian
Lie algebras are rigid with respect to filtered deformations.

Note that invariants of skew-symmetric forms were found in [10]. The case when the hight
of variables may be equal to 1 is more complicated. In [11] were found isomorphisms between
known simple 14-dimensional Lie algebras of characteristic 2. In particular, an isomorphism between
P(4:1) and classical Hamiltonian Lie algebra H(4,1,w) was constructed.

Acknowledgments. The investigation was supported by Russian Foundation of Basic Research
grant 18-01-00900/a.
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Homoclinic Bifurcation in Morse-Novikov Theory
Laudenbach F.

University of Nantes
francois.laudenbach@univ-nantes. fr

Morse-Novikov Theory deals with a closed manifold M endowed with a Morse function which
is only defined up to an additive constant (that is, a closed differential form of degree one). The
gradient X (relative to some auxiliary Riemannian metric) is well defined. Generically, X is a Kupka-
Smale vector field, meaning that it has no homoclinic orbit. In such a case, S. Novikov (1981) has
defined a complex encoding the orbits connecting zeroes of consecutive Morse index; possibly, there
are infinitely many of them!

But, homoclinic connecting orbits may appear in a one-parameter family of gradients. We
analyze carefully such bifurcations and their dramatic effects on the Morse-Novikov complex. An
unexpected doubling phenommenon may happen.

38



Realization of Manifolds as Leaves of Compact
Foliated Spaces Using Graph Colorings

Lopez J. A.

Universsity of Santiago de Compostela
jesus.alvarezQusc. es

Many (quasi-isometric types of) manifolds were shown to be non-realizable as leaves of fo-
liations on compact manifolds. Results of this type were achieved by Phillips and Sullivan,
Januszkiewicz, Cantwell and Conlon, Cass, Schweitzer, Attie and Hurder, Zeghib, and Menino Cotén
and Schweitzer. Despite of the existence of such“non-leaves” for compact foliated manifolds, we prove
that any (repetitive) Riemannian manifold of bounded geometry can be realized as a leaf of a (min-
imal) compact foliated space without holonomy. The difference is that the local transversals to the
leaves can be arbitrary Polish spaces in the case of foliated spaces, whereas the local transversals
have to be manifolds in the case of foliations. The main tool of the proof is a theorem with inde-
pendent interest that we have also shown. It states that, if an infinite (repetitive) connected graph
X has an upper bound A on the vertex degrees, then X has a (repetitive) limit aperiodic vertex
coloring by A colors. This is a joint work with Ramén Barral Lijo.

Arboreal Cantor Actions
Lukina O. V.

University of Illinois at Chicago, USA
ollukina940@gmail.com

The asymptotic discriminant is an invariant of actions of discrete groups on Cantor sets, recently
introduced by the speaker in a joint work with Hurder. The asymptotic discriminant arises as a
sequence of surjective group homomorphisms of certain profinite groups, associated to the action.

An arboreal representation of the absolute Galois group of a field is a profinite group, acting on
the boundary of a spherically homogeneous rooted tree. In this talk, we show how one can compute
the asymptotic discriminant for such representations. We give examples of arboreal representations
with stable and wild asymptotic discriminant.

The talk is based on the results of the article

O. Lukina, Arboreal Cantor actions, https://arxiv.org/abs/1801.01440.

Diffeomorphisms Preserving Morse-Bott Functions
Maksymenko S.!, Khohliyk O.2
L nstitute of Mathematics of NAS of Ukraine, ? Taras Shevchenko National University of Kyiv
maks@imath.kiev.ua, khokhliyk@gmail.com

Let M be a smooth compact manifold and P be either the real line or the circle. Notice also
that there is a natural right action v : C*°(M, P) x D(M) — C*>(M, P), defined by v(f,h) = foh
of the groups of diffemorphisms D(M) of M on the space C*°(M, P) of smooth maps M — P. For
f€C>®(M,P) and a subset X C M let

S(f)={heDM)|foh=f}  S(fX)=S5()nDM,X)
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be the stabilizers of f with respect to the above action of D(M) and the induced action of D(M, X).
Let also Siq(f) and Siq(f, X) be the identity path components of the corresponding stabilizers.

Theorem. Let f: M — P be a Morse-Bott map of smooth compact manifold M, so the set Xy of
critical points of f is a disjoint union of smooth mutually disjoint closed submanifolds Cy, ..., Ck.
Let also X C M \ X be a closed (possibly empty) subset. Then the maps

p: S(f, X) = D(Ey),  plh) =hls,,

k
po: Sia(f, X) = Dia(Sy) = [[Pia(Ci),  po(h) = (hley, -, hloy),
i=1

are locally trivial fibrations over their images, and the map pgy is surjective.

This result can be regarded as a variant of the well know result Cerf and Palais on local triviality
of restrictions to critical submanifolds of Morse-Bott function f for f-preserving diffeomorphisms.
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Non-monotonicity of the Kneading Invariant
for Lorenz Maps with Infinite Derivatives

Malkin M. 1., Safonov K. A.

Lobachevsky State University of Nizhny Novgorod
malkin@unn.ru; safonov.klim@yandex.ru

The problem on monotonicity of the kneading invariant (and, as a corollary, of the topological
entropy) for one-parameter families of unimodal maps was ispired by J.Milnor and W.Thurston
in 70s of the last century. Milnor proved monotonicity of the kneading invariant for the classical
quadratic family f.(x) = 22 4 ¢, and since that time there had been several results on monotonicity
for different families of smooth maps. A recent result by Van Strien, Levin and Shen states the
monotonicity of the kneading invariant for families of the form f¢(x) = |z|¢ 4 ¢ for sufficiently large
d.

Our aim is to study the dependence of the kneading for symmetric Lorenz maps f..(x) =
(=1 + c|z|17#)sign(x). This is the normal form for splitting the homoclinic loop in systems that
have a saddle equilibrium with one-dimensional unstable manifold provided that the saddle value is
negative. L.P.Shilnikov proved that such a bifurcation corresponds to the birth of Lorenz attractor.

In contrast to the maps considered above, this family has an infinite derivative at the point of
discontinuity, which leads to a new phenomenon. Numerical experiments show that the kneading
invariant does not change monotonically with respect to the parameter c. In the special parameters
domain, there exists an interval (0 < & < ex), in which the kneading invariant has a single minimum
as a function of the parameter c.

In the talk we discuss bifurcations that appear in this family and we indicate some domains in
the bifurcation plane where the kneading invariant depends monotonically.
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Holonomy Pseudogroup of a Manifold over the Algebra
of Dual Numbers and its Applications

Malyugina A. A., Shurygin V. V.

Kazan Federal University
alexandra.malyugina@gmail.com, Vadim.Shurygin@kpfu.ru

The algebra of dual numbers D = R(e) is a 2-dimensional R-algebra with basis {1,¢} and
multiplication defined by the relation e = 1. An arbitrary element of D has the form X = a + be,
where a,b € R. Denote by D" the D-module of n-tuples {X!, ..., X"}, X! =2’ + i, i=1,...,n,
of dual numbers. The equations ' = z{, = const, i = 1,...,n, define the canonical foliation F on
D",

Let U C D™ be an open subset. A mapping F : U — D™ is called D-smooth if the tangent
mapping T, F' is D-linear for all x € U. The structure of n-dimensional ID-smooth manifold on a real
2n-dimensional manifold Ms,, is given by an atlas with charts taking values in D™ and transition
functions being D-smooth diffeomorphisms. A D-smooth manifold MP is called complete if the
leaves of its canonical foliation are complete affine manifolds. For a D-smooth manifold M and a
complete immersed transversal ¢ : W,, — MY, we define the holonomy pseudogroup Ty. We apply
holonomy pseudogroups to the study of D-diffeomorphisms between complete ID-smooth manifolds.

Theorem 1. 1) Let M be a complete D-smooth manifold, and let ¢ : W,, — MP be an immersion
of a complete transversal. Then TW, /Ty is a D-smooth manifold D-diffeomorphic to MP. 2) If
holonomy pseudogroups of two complete D-smooth manifolds on immersed complete transversals are
isomorphic, then these manifolds are D-diffeomorphic.

Theorem 2. Let F' : MM — M?2P be a diffeomorphism between two D-smooth manifolds which
is a foliated isomorphism with respect to the canonical foliations, and let ¢ : W, — M2P be an
immersion of a complete transversal. The mapping F is a D-diffeomorphism if and only if the
holonomy pseudogroups on the immersed complete transversals ¢ and F o ¢ coincide.

The quotient D/A of the algebra D by a lattice A carries a structure of D-smooth manifold called
a D-torus and denoted by T'(A).

Theorem 3. D-tori T(A) and T(A') are D-diffeomorphic if and only if there exists an element
A = a+ae € D such that N' = AA. In the case when leaves of the canonical foliations on two
D-diffeomorphic D-tori T(A) and T(A') are everywhere dense, a D-diffeomorphism between T(A)
and T'(N') is given by the formula F(X) = AX + B, where A, B € D and the element A is uniquely
determined.

Let M, be an affine manifold [1] with atlas {(Ua, ha)}, ha : Uy 2 +— {28} € R and transition
functions of the form z?, = a} (a, B)xé + b (a, B). With M,, one can naturally associate two locally
trivial bundles 7w : OM,, — M,, and 7 : OM,, — M,, [1], |2] whose transition functions have the form
{Cﬂfl = CL;’;(O&,ﬁ)CL‘E + bi(aaﬁ)a yiv = a%@(aaﬁ)yg + bl(a75)} and {‘sz = aﬂ%ﬁ)xfg’ + bi(a’ﬁ)’ ygx =
ai (a, ﬁ)yg} respectively.

Assigning to an element X with coordinates {z%,y'} from 7=1(U,) (respectively, from 7~ 1(U,))
the element {y/, + ez’ } € D", we introduce on OM,, (respectively, OM,) a structure of D-smooth
manifold [2]. Denote the obtained D-smooth manifolds, respectively, by OPM,, and OPM,,.
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An affine manifold M,, is called radiant [1] if it has an atlas with linear transition functions.

Theorem 4. D-smooth manifolds OPM,, and OPM,, are D-diffeomorphic if and only if M, is a
radiant affine manifold.
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A Parameter Space of Cubic Newton Maps With Parabolics
Mamayusupov K.

National Research University Higher School of Economics Faculty of Mathematics
kmamayusupov@hse.ru

Abstract. A parameter space of cubic rational Newton maps for entire maps that take the form
(22 4 a)e® parametrized by a single complex parameter a # 0 is studied. The topological properties
of stable components, the components of cubic Newton maps for which the free critical point belongs
to attracting basins and the basin of the parabolic fixed point at oo, are obtained. When the free
critical point belongs to the basin of oo, the quasiconformal conjugacy classes in a corresponding
stable component were explicitly constructed. It is proved that each stable component contains a
unique center, conformally rigid f,, which is a postcritically minimal Newton map, moreover, each
quasiconformal conjugacy class comes from conformally rigid different types of f,, that we introduce
them as postcritically non-minimal Newton maps.

Introduction. The Newton map of an entire function g : C — C is the meromorphic map N,
defined by Ny(z) := z — ¢g(z)/¢'(z). The Newton maps for the family of entire functions g(z) =
(22 4 a)e? parametrized by a complex number a # 0, is the family given by the cubic rational maps

fa(2) =2 — z2zjz+z ‘_‘HL. The fixed points of f, are the roots of 22 + a = 0, which are superattracting,
and a point at infinity is parabolic of multiplier +1 with one attracting petal, thus its Julia set is
connected. We have a single “free" critical point that determines dynamical properties of the map.

Critical orbit relations. Let ¢; and co be critical points of a rational function f. We say that ¢;
and ¢y are in a critical orbit relations if f°™(¢1) = f°"(c2) for some non-negative integers m and n,

if ¢1 = ¢o we require m # n.
Lemma 1. All possible relations are of the form f"(ca) = c1 for some integer n > 0.
This leads us to introduce the following new notions:

Definition 1 (Minimal and non-minimal critical orbit relations). Let f, be a cubic Newton map
defined above and let ¢1 € Uy and co € Us be its critical points with Uy and Us the connected
components of the basin of the parabolic fized point at co. Assume f"(Uy) = Us with minimal such
m > 0. We say that ¢; and c2 are in minimal critical orbit relations if fO™(c1) = co with the same
m. If fo"(c1) = co with n > m then we say that ¢1 and ca are in non-minimal critical orbit relations.
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Definition 2 (Postcritically minimal and Postcritically non-minimal cubic Newton maps). A cubic
Newton map f, is called postcritically minimal (postcritically non-minimal) if its Fatou set consists
of superattracting basins and the parabolic basin of oo and if its free critical point

(a) has a finite orbit when it is on the Julia set or in superattracting basins; or

(b) is capture by another critical point on the parabolic basin and form minimal critical orbit relations
(non-minimal critical orbit relations) such that if ¢ is a critical point in a component U such
that fo™(U) is an immediate basin of oo with minimal such m > 0 then fS™(c) is a critical
point with the same m (then f"(c) is a critical point with n > m).

Stable components in the parameter space. The components of cubic Newton maps for which the
free critical point belongs to attracting basins and the basin of the parabolic fixed point at oo are
called stable components. Our main result is the following.

Theorem 1. Fvery stable component is a topological 2-cell and contains its center, which is a cubic
posteritically minimal Newton map. When the free critical point belongs to the basin of co, the qua-
siconformal conjugacy classes in a corresponding stable component is a quasiconformal deformation
of a unique stable cubic postcritically non-minimal Newton map. Moreover, each of these classes
18 a half-strip. The stable components corresponding to the parabolic fixed point splits into such
half-strips.

Upper Bounds of Morse Numbers of the Matrix Elements Irreducible
Representations of Simple Compact Connected Lie Groups

Meshcheryakov M. V.

Mordovian State University. Saransk, Russia
mesh@math.mrsu.ru

Based on the differential-topological approach to the analysis of the properties of the matrix
elements of real irreducible representations of connected compact simple Lie groups G previously we
have classified their so-called taut representations [1, 2|.

It turned out that among non-commutative groups only compact Lie groups O(n), U(n), and
Sp(n) in their standard representations are taut representations and the minimum number of critical
points of Morse matrix elements is the total Betty number of the indicated groups G. The Morse
numbers of the matrix elements of the other real irreducible representations p : G — Aut(R"N) are
strictly greater than the total Betty number of G. In the theorem stated below, we indicate the
upper bounds on the minimum number of critical points of Morse matrix elements from the space of
matrix elements M (p) of the representation p in terms of the highest weight A of the representation
and the geometric characteristics of the Lie group G, based on the integral-geometric formulas of |3,
4].

It is important that all functions from the space of matrix elements M (p) of the representation py
with the highest weight X\ are the eigenfunctions of the bi-invariant Laplace operator on G, belonging
to the eigenvalue Ey =< A+, A+3J > — < §,0 >, where ¢ half-sum of positive roots of a Lie algebra
of a group G and <, > is a Cartan—Killing metric.

Theorem. The minimum number vy(py) of the critical points of the Morse matriz elements from
the space of matriz elements M(py) of the real irreducible representation py : G — Aut(RN) of a
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connected compact simple group Lie G with the highest weight A is estimated above by the number
2/0n(Ex/n)"?v0l(G), where o, is the volume of the n-dimensional sphere of radius 1,n = dimG, E
is the eigenvalue Laplace operator corresponding to the highest weight A and vol(G) is the volume of
the Lie group G with respect to the Riemannian element of the Cartan—Killing metric.

Remarks.

1. The upper bound indicated in the theorem is exact and is achieved on groups SU(2) or SO(3)
in representations of the minimum dimension.

2. In December 2017, on the conference dedicated to 80th anniversary of V.I. Arnold, K. Kozhasov
[5] announced the following result concerning an exact upper bound the number of critical
points Cqr,(f) of harmonic polynomials f on the sphere Sn~1 corresponding to the eigenvalue
- d(d 4+ n — 2) of the spherical Laplace operator:

Can(f) <20(d—1)"4+(d—1)"2 4. 4+ (d—1)+1].

Acknowledgments. The speaker is supported by the grant of the RFBR and the Government
Republic of Mordovia in the framework of the scientific project Ne 18-41-130004.

References

[1] C. Gorodski, Taut representation of compact simple Lie group. Illinois J. Math. 52 (2008), no.
1, pp. 121-143

[2] M.V. Meshcheryakov, Classification of the taut linear irreducible representations of compact
connected Lie groups. The fourth school-conference "Lie algebras, algebraic groups and the
theory of invariants" Moscow, Russia. January 27 - February 1, 2014. Abstracts.

[3] V.M. Gichev, Metric properties on compact isotropy irreducible homogeneous spaces. Anal. Math
Phys. 3, no. 2 (2013), pp. 119-144.

[4] D. Akhiezer, B. Kazarnovskii. On common zeros of eigenfunctions of the Laplace operator. Abh.
Math. Sem. Univ. Hamburg. 87, no. 1 (2017) pp. 105-111.

[5] K. Kozhasov. On spherical harmonics with maximum number of critical points. International
Conference "Contemporary Mathematics". Moscow, Russia. December 18-23, 2017.

Realization of Diffeomorphisms with One Saddle Orbit
Nozdrinova E. V.
NRU HSE - Nizhnij Novgorod

maati@mail.ru

In the study of discrete dynamical systems, i.e., the study of orbits of self-maps defined on a
given compact manifold, the periodic behavior plays an important role. In the last forty years
there was a growing number of results showing that certain simple hypotheses force qualitative and
quantitative properties (like the set of periods) of a system. One of the best-known results is the
title of the paper “Period three implies chaos for the interval continuous self-maps” [5]. The effect
described there was discovered by O. M. Sharkovsky in [7]. The most useful tools for proving the
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existence of fixed points or, more generally, of periodic points for a continuous self-map f of a compact
manifold is the Lefschetz fixed point theorem and its improvements (see, for instance [2| and [3]).
The Lefschetz zeta-function simplifies the study of the periodic points of f. This is a generating
function for all the Lefschetz numbers of all iterates of f. The periodic data of diffeomorphisms with
regular dynamics on surfaces were studied by means zeta-function in a series of already classical
works by such authors as Paul R. Blanchard, John M. Franks, Rufus Bowen, Steve Batterson, John
Smillie, William H. Jaco, Peter B. Shalen, Carolyn C. Narasimhan, and others. A description of
periodic data of gradient-like diffeomorphisms of surfaces was given in [1| by means of classification
of periodic surface transformations obtained by Jakob Nielsen [6]. In [4], the authors show that the
study of periodic data of arbitrary Morse-Smale diffeomorphisms on surfaces is reduced by filtration
to the problem of computing periodic data of diffeomorphisms with a unique saddle periodic orbit.
Polar diffeomorphisms of the surface are considered, that is, iffeomorphisms having a single sink
and a single source periodic orbit. A classic example of such a diffeomorphism is the sink-source
diffeomorphism, which has no saddle points and exists only on a two-dimensional sphere. However,
the addition of even a single saddle orbit greatly expands the class of polar diffeomorphisms on
surfaces. All possible types of periodic data for such polar diffeomorphisms have been established,
and it is shown that the saddle orbit always has a negative orientation type. It is proved that
every orientable surface admits a Morse-Smale diffeomorphism with one saddle orbit that preserves
orientation. It is shown that these diffeomorphisms have exactly three nodal orbits. In addition,
all possible types of periodic data for such diffeomorphisms are established. The report presents
the realization of diffeomorphisms with one saddle orbit on surfaces of any genus depending on the
periodic data.

Acknowledgments. Author thanks Olga Pochinka for irreplaceable help. The research of

periodic data for diffeomorphisms with a single saddle orbit was carried out with the support of
grant RFBR, (project 18-31-00022).
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On Minimal Non-invertible Maps
Oprocha P.

AGH University of Science and Technology, Krakéw, Poland
oprocha@agh.edu.pl

In the late 1960s J. Auslander asked questions concerning the existence of minimal non-invertible
maps. Since then many examples of such maps have become available, but many questions remain
as to which spaces admit such maps.

In 2003, Bruin, Kolyada and Snoha asked whether the circle is the only infinite continuum that
admits a minimal homeomorphism but no non-invertible minimal map. They also suspected that
R.H. Bing’s pseudo-circle might provide an answer for the above question.

In 2017, the question was answered in the negative by Downarowicz, Snoha and Tywoniuk by
the construction of a family of continua which admit minimal homeomorphisms and do not admit
minimal non-invertible maps.

Recently in joint work with Boroniski, Liu and Kennedy we proved that pseudo-circle does not
serve as another counterexample, by proving that it admits a noninvertible minimal map.

In this talk we will present a few results and techniques related to the above question and answers
mentioned above.

Sets of Group Actions with Various Shadowing Properties
Pilyugin S. Yu.
St. Petersburg State University, St. Petersburg, Russia
sergeipild 7T@mail.ru

In this talk, we discuss various shadowing properties of classical dynamical systems (actions of
Z) as well as of actions of more general finitely generated groups.

A Buffer Phenomenon in a System of Two Non-Linearly
Coupled Relaxation Oscillators

Preobrazhenskaia M. M.
P.G. Demidov Yaroslavl State University

rita.preo@gmail.com

We consider a mathematical model of synaptic delay coupled neuron type oscillators

a1 = [Af(ur(t — 1)) + bg(ug(t — h)) In(us /uq)]uq, (1)
Uy = [Mf(ua(t — 1)) + bg(ur(t — h)) In(u./ug)]us.

This model uses an idea of FTM (Fast Threshold Modulation) and is based on a model suggested
in [1]. A difference is an coupling delay h > 1.

Here, uq(t),u2(t) > 0 are normalized membrane potentials of neurons. A parameter A\ > 1
is large and characterizes the rate of electric processes in the system. Parameter b = const > 0,
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u, = exp(c)) is a threshold value, where ¢ = const € R. Functions f(u), g(u) € C?(R,) satisfy the
following conditions:

f(0)=1, g(0) =0; Yu >0 g(u) > 0;a > 0; as u — +00
F) + a,g(u) — 1, uf (w), w2 £ (), ug' (), u?g" (w) = O(u"L).

We make substitution u; = exp(Az;), j = 1,2. Then, as A — 400, we get the following limit
object:
5'61 == R(CL‘l(t — 1)) + b(C - xl)H(.Tg(t — h)),

. 2
i = R(wa(t — 1))+ b(c — ) H(za (t — b)), (2)
where
def 1, whenever x <0, def [ 0, whenever z <0,
R(z) = { —a, whenever z > 0, H(z) = { 1, whenever x > 0.

It is relay system. We prove that there is a buffer phenomenon for system (2).

Definition 1. We speak of the buffering phenomenon if the system under consideration can have an
arbitrary fixed number of stable periodic modes if the system parameters are properly chosen.

We prove the following.

Claim. There exists a domain in a parameter space of system (2) such that for anyn € N there
exists h such that there exist n — 1 stable periodic solutions in a phase space of (2). Components
z1(t) and x2(t) of the solutions have, respectively, m and n —m (m =1,...,n — 1) relatively short
alternating segments of positivity and negativity which go after a long enough segment where the
solution values are negative.

For system (1), a numerical modelling with correspondence initial condition detects a buffer
phenomenon.

Since u; depends on z; (i = 1,2) exponentially, solution properties described in Claim means
that uq(t) and us(t) have m and n—m impulses, respectively. Such behaviour is called bursting-effect
in a neurodynamics.

Definition 2. A bursting-effect is an alternation of several consecutive intensive spikes with refrac-
tory period of a membrane potential.

Note that the obtained effects (buffering and bursting) are due to the delay in the connection
chain.

Acknowledgments.  The reported study was funded by RFBR according to the research
project Ne 18-29-10055.
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On Two-parameter Perturbations of the Harmonic Oscllator Equation
Roitenberg V. Sh.

Yaroslavl State Technical University
vroitenberg@mail.Tu

We consider families £ = {X,} of equations

Xy i+ a = pfi(e, @, p) + pafo(e, @, p),

where p = (1, p2) , fr are CO-functions on G x [—0,0)% , G = {(z,y): 2% + y* < R?}, such that
fx(0,0, 1) =0,k = 1,2, and corresponding autonomous systems

'Ct:y> y:_$+M1f1(xa$,#)+M2f2($ayaﬂ)

The set F of all such families is identified with linear space of C°-functions (fi, f2): G x [~0,0]? —
R? with norm

_ i+J 19,7
€] ,gg@g(gﬁﬁ)ogrgﬁ;g\a fi(@,y, p)/0x' 0y |.

Let
27

Ji(u) = ; fr(ucosp,using,0)sinpdp, k=1,2; J(u)=(Ji(u),J2(u));
D(u) = Jy(u)J3(u) = Ji(u)J2(u).

It is clear that D(0) = D’(0) = D"(0) = 0.

Let SF be the subset of F defined by conditions: 1) D(u) has on (0, R),0 < R < R, only simple
zeroes; 2) D(R) # 0; 3) D" (0) # 0; 4) if D(u1) = D(u2) =0, 0 < u; < ug < R, then vectors J(uq)
and J(usz) are linear independent; 5) if D(u) = 0, 0 < u < R, then vectors J(u) and J(R) , J(u)
and J'(0) are linear independent.

Theorem 1. The set SF is open and everywhere dense in F.

Denote by T the arc [0, R] x {0} C G. Let ||| be the Euclidean norm in R2.

Theorem 2. Let for family {X,} € SF 0 = uy < ug < --- < u, be the zeroes of
function D(u), and un+1 = R. Let qo,q1,...,qn+1 be a permutation of integers 0,1,...,n +
1, such that numbers ; € [0,m), where cost; = —sgnJi(ug)J2(ug)/||J(ug)|, sin€;, =

sgnJi(ug, ) J1(ug,) /|| (ug, || if Ji(ug,) # 0, and 0; = 0 if Ji(ug) = 0, for the case uy # 0;
cos 0; = —sgnJi(0)J5(0)/]|J'(0)]|, sinb; = sgnJ;(0)J1(0)/||J'(0)| if J{(0) # 0, for the case ug, =0,
are in the following order: 0 < 0y < -+ < 0y < Opq1 <.

Then for some § > 0 there is a partition of the set M = {p = (u1, u2) : 0 < 3 + p3 < 6%} into
subsets M;‘, M, B;‘ and B;” (i =0,1,...n + 1) such that in coordinates (0,p), x = pcost, y =
psin® in M Bf ={u€ M:0=05(p)} fori=0,...n, M = {u € M: 6 (p) <0 < 6X(p)} for
i=1..n+1, My ={peM:0, ,(p)—7<0<65(p)}, My ={peM:6 ,(p)<6<6y(p)}
where «9;? 1[0,6) = R (0; :[0,6) > R) isa Cl— function, OJJ-F(O) =0; (0;(0)=0; +m);

1) an equation X, p1 € Mii, (i =0,...n+4+ 1) has a hyperbolic singular point - the focus (0,0)
and only hyperbolic closed orbits intersecting the arc T at interior points;

2) an equation X, p € Bii, (q; # 0,n + 1) has a hyperbolic singular point - the focus (0,0), all
its closed orbits intersect the arc T at interior points, one of them is a double cycle, and the rest are
hyperbolic limit cycles;
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3) an equation X, pu € Bii, (qi = 0) has the weak focus (0,0) and only hyperbolic closed orbits
intersecting the arc T at interior points;

4) an equation X, p € Bii, (¢i = n+ 1) has a hyperbolic singular point - the focus (0,0) and
only hyperbolic closed orbits intersecting the arc T , one of them at the point (R, 0).

An Estimates for a Surface of Given Topological
Type with Given Mean Curvature

Ryazanova O. A., Kokarev V.N.

Samara National Research University
olga.riazanova2011@yandex.ru, ko1949Qyandex.ru

This paper describes a surface in R? with a mean curvature that equals value of some function
in each point. Equation wich represents surfaces of given mean curvature is obtained. Conditions
wich enable it to be resolvable is obtained.

Let S be a compact regular surface locally defined by equation r = r¥(u,v) in R3. Let a fuction
H(z,y,z) be given in some locality of S. We consider a question of the existance of some surface
S7 homeomorphic to S, defined by an equation r = %(u,v) + f(u,v)7"(u,v) and in each point A
has avirage curviture H(A). This problem has been considered in [1] (271-303) and in [2] for the
case when S is a sphere or a torus.

There is a coordinate system (u, v, p) emerges in the locality of S, where (u, v) - local coordinates
on S and p is offset along perpendicular to S. This problem reduces to the question of some
second-order differential equation solvability on f(u,v) within S . Evaluation of solution and of first
derivatives of solution is required for the proof of solvability of this equation.

Let S” be a surface defined by an equation 7 = r(u,v) + pi” (u,v) where p is a constant, such
that |p| < ¢. Here ¢ = mm(AeS,i:ﬁ){ﬁA)} and k;(A) are main normal curvitures of S at the point

; p p— _k ko
A. Mean curviture of S” equals HP = e
We represent H as a sum

H(u,v,p) = H(u,v, p) + h(u,v,p).
Theorem. If a and b are constants, and —c < a < b < ¢, and if
h(u, v, p) <0 when p < a,

h(u,v,p) >0 when p > b,

there are following estimates hold for the function f(u,v):

a < f(u,v) <b.
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Limit Properties of Independent Random Semigroups Compositions
Sakbaev V. Zh.

Moscow Institute of Physics and Technology
fumi2003@mail.ru

The notion of random operator valued functions and random group of bounded linear operators
in Hilbert space will be investigated (see [1]). The topology on the vector space of operator val-
ued functions is introduced. The distributions on the topological vector space of operator valued
functions corresponding to the sequence of compositions of random functions are studied.

The Feynman iteration of random operator valued function will be introduced as the sequence of
compositions of independent identically distributed random operator valued functions. The conver-
gence of the mean values of Feynman iteration of random 1-parametric semigroup to some averaged
semigroup is obtained by means of Chernoff theorem. The estimates of the deviation of compo-
sitions of independent identically distributed random 1-parametric semigroup from its mean value
is obtained. The convergence of the sequence of compositions of independent random 1-parametric
semigroup to its mean value in probability is studied (see [2]). The approximation of the 1-parametric
semigroup by the sequence of composition of random shifts operators is investigated. The property
of asymptotically independence of Feynman iteration of the random semigroup is investigated. The
independization of the random operator valued function is defined as the map of this random func-
tion into the sequence of random operator valued functions which has asymptotically independent
increments. The examples of independization of random operator valued function are given.
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Integrable Dissipative Dynamical Systems
Shamolin M. V.

Lomonosov Moscow State University
shamolin@rambler.ru, shamolin@imec.msu.Tu

We study nonconservative systems for which the usual methods of the study, e.g., Hamiltonian
systems, are inapplicable. Thus, for such systems, we must “directly” integrate the main equation of
dynamics. We generalize previously known cases and obtain new cases of the complete integrability
in transcendental functions of the equation of dynamics of a multi-dimensional rigid body in a
nonconservative force field (see also [1]).

We obtain a series of complete integrable nonconservative dynamical systems with nontrivial
symmetries. Moreover, in almost all cases, all first integrals are expressed through finite combinations
of elementary functions; these first integrals are transcendental functions of their variables. In
this case, the transcendence is understood in the sense of complex analysis, when the analytic
continuation of a function into the complex plane has essentially singular points. This fact is caused
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by the existence of attracting and repelling limit sets in the system (for example, attracting and
repelling focuses) (see also [2]).

Problems examined are described by dynamical systems with so-called variable dissipation with
zero mean. The problem of the search for complete sets of transcendental first integrals of systems
with dissipation is quite topical; a large number of works are devoted to it. Due to the existence
of nontrivial symmetry groups of such systems, we can prove that these systems possess variable
dissipation with zero mean, which means that on the average for a period with respect to the
periodic coordinate, the dissipation in the system is equal to zero, although in various domains of
the phase space, either the energy pumping or dissipation can occur. As applications, we study
dynamical equations of motion arising in the study of the plane and spatial dynamics of a rigid
body interacting with a medium and also a possible generalization of the obtained methods for the
study of general systems arising in the qualitative theory of ordinary differential equations, in the
theory of dynamical systems, and also in oscillation theory.

This activity is also devoted to general aspects of the integrability of dynamical systems with
variable dissipation. First, we propose a descriptive characteristic of such systems. The term “vari-
able dissipation” refers to the possibility of alternation of its sign rather than to the value of the
dissipation coefficient (therefore, it is more reasonable to use the term “sign-alternating”) (see also
[3])-

The assertions obtained in the work for variable dissipation system are a continuation of the
Poincaré—Bendixon theory for systems on closed two-dimensional manifolds and the topological
classification of such systems.

The problems considered in the work stimulate the development of qualitative tools of studying,
and, therefore, in a natural way, there arises a qualitative variable dissipation system theory.

Following Poincaré, we improve some qualitative methods for finding key trajectories, i.e., the
trajectories such that the global qualitative location of all other trajectories depends on the location
and the topological type of these trajectories. Therefore, we can naturally pass to a complete
qualitative study of the dynamical system considered in the whole phase space. We also obtain
condition for existence of the bifurcation birth stable and unstable limit cycles for the systems
describing the body motion in a resisting medium under the streamline flow around. We find
methods for finding any closed trajectories in the phase spaces of such systems and also present
criteria for the absence of any such trajectories. We extend the Poincaré topographical plane system
theory and the comparison system theory to the spatial case. We study some elements of the theory
of monotone vector fields on orientable surfaces.
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Shape and Strong Shape of Limit Sets in Dynamical Systems
Shekutkovski N.

University of St. Cyril and Methodius, Skopje, Republic of Macedonia
nikita@pmf.ukim.mk

For the analysis of the long-term behaviour of a dynamical system. it is important to know how
the attractor looks like. Since, attractors could have very complicated local structure, an appropriate
tool is shape = a homotopy theory adapted to this kind of spaces. One of the most significant results
is the following theorem

Theorem. Suppose ® : X x RT — X be a semiflow defined on a compact metric space X. If M is
a global attractor then the inclusion M — X induces a shape equivalence.

In the talk wil be given a short introduction to intrinsic approach to shape and usimg this
approach the theorem will be proven for arbitrary metric spaces. By intrinsic approach (intrinsic
shape) will be shown that a strong version of the theorem above can be proven i.e. shape can
be replaced by stong shape. Similiar results, for other limit sets in dynamical systems like chain
reccurent set are stated also.

Sparkling Saddle Loops of Vector Fields on Surfaces
Shilin I. S.

Higher School of Economics, Moscow, Russia
i.s.shilin@yandex.Tu

A vector field v on a compact two-dimensional surface different from the sphere and projective
plane can have a dissipative saddle P with a saddle loop that attracts the “free” unstable separatrix
of this saddle. When the loop is unfolded in a generic one-parameter family, new saddle loops appear
for parameter values arbitrarily close to zero.

We study this as a semi-local bifurcation, i.e., we look at a small neighborhood of the unstable
manifold of the saddle that has a loop. In the orientable case, when this neighborhood is a torus
with a disk removed, we get the following result.

Theorem. Let v be a smooth vector field as described above. Then for a generic one-parameter
smooth local family V' = {ve }oer,0) with vo = v there is a small neighborhood U of W*(P) such that
for the restriction V of V on U the bifurcation diagram is a Cantor set K that contains zero and lies
either to the right or to the left from it. The endpoints of the intervals of (R,0)\ K correspond to
vector fields with separatriz loops. Moreover, family V is topologically equivalent to any other local
family obtained in the same way; in particular, it is structurally stable.

By modifying the field far from the unstable manifold of our saddle, we can obtain countably
many nonequivalent bifurcation diagrams for local one-parameter families.

Theorem. Let M be a compact smooth two-dimensional surface other than the sphere, Klein bottle,
and projective plane. Then generic one-parameter local families of smooth vector fields on M admit
at least countably many non-equivalent bifurcation diagrams.
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In our construction, each of these diagrams is obtained as the union of a cantor set K, of the
same origin as above, and a countable set of points that intersects each inner interval of (R,0) \ K
by the same finite number of points. This latter number distinguishes the diagrams. For each of
these diagrams, there is an open set of local families that realize it.

Chaos and Bifurcations in a System for Predators Competing for One Prey
Séderbacka G.
Abo Akademi

gunnar53@mail.Tu

We give a review of some bifurcations and chaotic behaviour of n competing predators feeding
on the same prey in a system of the type

X|=pigi(S)Xi—di X;, i=1,..,n, (1a)
n

S"= H(S) _Z(b’ @i (S) Xi, (1b)
i=1

where the variable S represents the prey and the variables X; represent the predators. They are, of
course, non-negative. The function ¢; is assumed non-decreasing. We assume

H(0) = H(K) =0 for some K >0, H(K) <0, H"(s) <0, ¢;(0) =0, ¢i(s)>0.

The functions ¢; and H are of the class C?[0, o).

We mainly consider the case where

H(S)=rS (1_;;)’%(5):5514/ (2)

and where the parameters r, K and A; are positive.

In this case we assume p; > d;. If not, the corresponding predator will not survive.

The dynamics in the coordinate planes representing one of the predators and the prey is well
known. But there are still many open questions when predators coexist. The system has no equi-
librium, where predators coexist. But the predators can coexist in a cyclic or chaotic way. Different
types of complicated chaos can occur even for biologically realistic parameters. We review some re-
sults on simple local behaviour, conditions for extinction of some of predators. We discuss different
types of chaos, among them the normal period doubling and "spiral" chaos. We give some results
on building discrete models approximating a Poincaré map.
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Bifurcation Analysis of the Dynamics of Two Vortices
Sokolov S. V.

Moscow Institute of Physics and Technology
sokolovsv72@mail.ru

We are concerning with a system two point vortices in a Bose - Einstein condensate enclosed in a
trap [1]. The Hamiltonian form of equations of motion is presented and its Liouville integrability is
shown. A bifurcation diagram is constructed, analysis of bifurcations of Liouville tori is carried out
for the both cases of opposite-signed vortices, and same-signed vortices [2-3|. The types of critical
motions are identified. Two-parameter family of integrable Hamiltonians is presented.
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On a Quantum Heavy Particle
Treschev D. V.

Steklov Institute of Mathematics
treschev@mi-ras.ru

We consider Schrédinger equation for a particle on a flat n-torus in a bounded potential, de-
pending on time. Mass of the particle equals 1/u?, where p is a small parameter. We show that
the Sobolev HY-norms, v > 1 of the wave function grow approximately as t¥ on the time interval
t € [0,t.], where t, is slightly less than O(1/p).

On Partially Hyperbolic Symplectic Automorphisms of a 4-dimensional Torus
generated by integer unitary symplectic matricies

Trifonov K.
Lobachevsky State University of Nizhny Novgorod
We study partially hyperbolic symplectic automorphisms of a 4-dimensional torus generated by
integer unitary symplectic matricies. Before only hyperbolic torus maps were mainly studied, the

investigations of partially hyperbolic automorphisms started rather recently and there are still many
open questions. In this paper, we give the classification of the linear symplectic automorphisms
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of a 4-dimensional symplectic torus considering both possible cases: transitive and intransitive.
Also we construct examples of partially hyperbolic symplectic maps on the four-dimensional torus
with various dynamics. In particular, we construct such map on the torus which has transitive
one-dimensional foliations generated by the eigendirections corresponding to eigenvalues lying on
the unit circle. In order to construct such an example, the theory of irreducible polynomials with
integer coefficients and some properties of invariant subspaces of the related integer unitary matrices
are exploited.

Levy Laplacian and Yang-Mills Heat Flow
Volkov B. O.

Bauman Moscow State Technical University
borisvolkov1986@gmail.com

The Levy Laplacian Ay, as it was introduced by Paul Levy (see [1]), acts on the function f
defined on the Hilbert space by the formula

1
Apf(z) = lim — < f"(z)ey, e >,

where {e,} is an orthonormal basis in the Hilbert space. Also the original Levy Laplacian can
been defined as the integral functional determined by the special form of the second derivative. In
the modern literature the infinite dimensional Laplacians defined by the analogy of both of these
definitions on the various functional spaces are also called the Levy Laplacians. The relationship
between the different definitions of the Levy Laplacian on the same functional space can be non-
trivial.

One of the main reasons of the interest in the Levy Laplacian is its relationship with the Yang-
Mills equations. In [2] it was proved that the connection A with the curvature F' satisfies the
Yang-Mills equations

VB, =0

if and only if the parallel transport U4 associated with the connection A is a harmonic functional
for the Levy Laplacian:
AU =0.

In [2] the connection A on the flat space and the Levy Laplacian defined as the integral functional
were considered. Some results on the relationship with the Yang-Mills equations and the Yang-Mills
equations were also obtained in [3,4,5].

Our report is devoted to the Levy Laplacian on the infinite dimensional manifold. We show the
equivalence of the different definitions of this operator. Previously the heat semi-group for the Levy
Laplacian on the manifold was studied in [6]. We study the relationship between the heat equation
for the Levy Laplacian on the manifold and the Yang-Mills heat flow. Namely, we show that the
time depended connection A(-,t) satisfies the Yang-Mills heat equations

0

&Au(-, t) =V, F", (1)

if and only if the associated flow of parallel transports U(t) = U A(t) satisfies the heat equation for

the Levy Laplacian:

;U(t) = ALU(t).

95



References

[1] Lévy P. Problemes concrets d’analyse fonctionnelle. Paris, Gautier-Villars, 1951.

[2] Accardi L., Gibilisco P., Volovich I. V. Yang-Mills gauge fields as harmonic functions for the
Lévy-Laplacian // Russ. J. Math. Phys. 1994. Vol. 2., No. 2, pp. 235-250.

[3] Leandre R., Volovich I. V. The Stochastic Lévy Laplacian and Yang-Mills equation on manifolds
// Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2001. Vol. 2., No. 2, pp. 151-172.

[4] Volkov B. O. Lévy Laplacians and instantons // Proceedings of the Steklov Institute of Math-
ematics. 2015. Vol. 290, pp. 210-222.

[5] Volkov B. O. Stochastic Levy differential operators and Yang-Mills equations // Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 2017. Vol. 20, No. 2, 1750008

[6] Accardi L., Smolyanov O. G. Feynman formulas for evolution equations with Levy Laplacians
on infinite-dimensional manifolds, Doklady Mathematics 2006. Vol. 73 pp. 252-257.

Torus Bifurcation in System with 2:1 Resonance
Volkov D. Yu.!, Galunova K. V.?

LSaint Petersburg State University, > Peter the Great Polytechnical University
Ldmitrivolkov@mail.ru, 2 galounova@gmail.com

In the first papers of this series [10,11] we studied a dissipative Hopf — Hopf bifurcation with
2 :1 resonance . In this paper, we continue the study of this bifurcation. We consider the four —
dimensional autonomous system of differential equations given by

T = F(x,pn), (1)

which depends on the real parameter p. We assume that is F(0,u) = 0. We suppose that for
a certain value of p, say pu = 0, the matrix DF,;(0,0) has two pairs of simple pure imaginary
eigenvaluestiwiand +iwy. In this paper we consider 2:1 resonance wy/w; = 2. This problem has
been studied by many authors | 2,4,6,7,9,10]. We consider the secondary bifurcation (Neimark -
Sacker bifurcation) of mixed - mode solution and dynamics of full system. A parameter dependent
polynomial truncated normal form is derived. We study this truncated normal form :

X = (X +8Y +cos(fy) Z +2Y?),
Y = (06X +Y +sin(fy) Z-2XY), (2)
Z = e2(—+X)2).

The three-dimensional system (2) is the main object of study in this paper. It has been shown
that system (2) demonstrate Hopf bifurcation, period—doubling cascades and chaotic attractor
[1,3,5,7,8]. But a analytical study of Hopf bifurcation in this system wasn’t given in this pa-
pers. In [21] we consider system (2) in the case p = 7. In this paper the system (2) is considered
with conditions g # .
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Vector Bundles and Riemann—Hilbert—Birkhoff Problem
Vyugin 1. V.
NRU HSE and IITP RAS

vyugin@gmail.com

Applications of the theory of holomorphic vector bundles with meromorphic connections to the
classical Riemann—Hilbert problem are well known. We are going to apply holomorphic vector
bundles with meromorphic additive shift or ¢-shift to studying of generalized Riemann—Hilbert—
Birkhoff problem for difference and ¢-difference systems.

As the application of this approach we obtain a generalization of Birkhoff’s existence theorem.
We prove that for any admissible set of characteristic constants and monodromy there exists a system

Y(z4+1)=A(2)Y(2) or Y(gz)=Q(2)Y(2), (1)

which has the given monodromy and characteristic constants.
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An Unguided Tour Started from Chirality
Wang S. C.

Peking University, Beijing, China
wangsc@math.pku.edu.cn

We will report an unguided mathematical tour started from research on chirality since 2000 and,
attracted by questions around attractors, led to a zigzag path across topology and dynamics, often
switched dimensions.

People who joined this tour at various stages include F. Ding, B. Jiang, Y. Liu, Y. Ni, J. Pan, H.
Sun, C. Wang, S. Wang, J. Yao, Y. Zhang, H. Zheng, Q. Zhou and B. Zimmermann. Conversations
with R. Edwards, L. Wen, C. Bonatti, J. Hillman, S. Kamada and others, added to the twists and
turns that made the trip more fun.
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On the Concept of Lyapunov’s Transformations Groups
Yakupov Z. Ya.

Kazan National Research Technical University named after A. N. Tupolev
zymat@bk.ru

The purpose of studying the groups of Lyapunov transformations is to classify differential equa-
tions according to certain asymptotic properties of solutions [1-3|. Using the concept of asymptotic
equivalence (according to Lyapunov), a partition of a certain class of differential equations into equiv-
alence classes is carried out. In turn, the purpose of such a classification is to obtain, if possible, a
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complete set of invariants of the Lyapunov transformation group. When using the group method to
search for exact solutions of ordinary differential equations, if possible, or to study the properties of
the solutions of the latter, a certain transformation is sought, leading the studied equation to a stan-
dard form for which the integration methods or the required properties of the solutions are known.
More precisely: a certain group of transformations acts on the entire class of differential equations of
a given type; an element of this group transforms the original equation into an equation of the same
class and, accordingly, the solution of the equation under study into a solution of the transformed
equation, i.e. the set of elements of the group of transformations is closed on a given class of equa-
tions and their solutions with respect to the action of the composition of the elements of this group
of transformations. Developing this approach, one can write out all canonical forms of solvable (for
example, in quadrature) equations and, applying all sorts of (reversible) transformations to them,
find an infinite number of other solvable equations. The same can be applied to equations for which
the properties of their solutions are simply known. It is quite natural that in this case there arise
questions of describing the fullest possible system of invariants of the transformations under consid-
eration. Definition. A Lyapunov transformation group is a group of transformations of a certain set
of differential equations, the list of invariants of which contains the stability of the trivial solution
and the spectrum. In contrast to the linear case, in the situation mentioned above it is not always
possible to guarantee the uniformity of the exponential estimates of solutions. Consequently, the
conclusions on stability, for example, the zero solution, which follow from these estimates will not
always be true. If, however, for evaluating solutions, there is a uniformity over the initial point, then
in this case the conclusions are the same as for linear systems. The group approach described above,
of course, is not without some flaws, and the concept of the Lyapunov transformation also does
not always allow solving the problem of the behavior of solutions, for example, when the spectrum
of the equation contains zero. In this case, the simplest equation of a particular equivalence class
will be associated with the problem of characteristic exponents, and some unified approach will be
needed to the study of properties of solutions, which may be different from the use of transformation
groups. Also, when using the group approach, there is no guarantee that the particular equation of
interest to us will be in the set in a certain sense of equivalent differential equations. Then the task
of finding the necessary, as well as sufficient conditions, or even the criteria for the reducibility of
given classes of differential equations to equations of a particular type, is brought to the fore. As for
the areas of application of the Lyapunov transformation groups, the following can be noted. Namely:
the mathematical description of complex diffuse systems in the natural sciences (for the purpose of
studying them) cannot be produced by deterministic laws. In such situations it is necessary to use
suitable mathematical models. The use of classical methods of research and integration of ordinary
differential equations in various areas of mathematical modeling is not effective enough to solve a
large number of applied problems. For example, classical methods are ineffective when used in the
study of many natural sciences and differential models in education, in the application of differential
equations in variational problems, in the numerical-analytical integration of equations that have a
non-unique solution, in the study of certain inverse problems. And here the group approach comes
to the fore. Most of the problems of describing technical and technological systems leads to too
complex nonlinear differential equations that cannot be solved in an exact way. In such cases, it is
possible to suggest approaches similar to those described in this work.
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The Period-set of a Map from the Cantor-Set to Itself
Zastrow A.

University of Gdarisk (Inst. Math.)
zastrow@mat.ug. edu. pl

[The talk is based on the joint work with James W. Cannon & Mark Meilstrup|

This piece of research was motivated by Sharkovskii’s Theorem, which shows that the periods of the
periodic points of a self-map of the unit-interval are severely restricted in the sense, that only tails
of a non-standard linear order of the natural numbers can be realized as period-sets. In this research
project we asked the analogous question for the Cantor-Set: Which period-sets can be realized
by a (continuous) self-map f of the Cantor-Set to itself? — Although the proof of Sharkovskii’s
Theorem heavily relies on using the Intermediate Value Theorem which does by no means apply to
the Cantor-Set, we came to the conclusion that some kind of restriction does even hold in case of
the Cantor-Set: The talk will be devoted to state and sketch the proof of a Theorem confirming
that, while an arbitrary subset of the natural numbers can occur as period-set of f as long as f is
allowed to have aperiodic points or preperiodic points, a necessary and sufficient restriction for a set
to become a period set of some f will be described for those f where each point of the Cantor set
belongs to some period.
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Some Questions of the Stability of the Stochastic Model
of Population Growth

Zavialova T.V.

National research technological University "MISIS"
tzava@yandez.ru

One of the pressing issues of modeling systems that describe the dynamics of population numbers
are issues of sustainability. For various deterministic models, the questions of stability and control
have been studied in many papers since the last century. Studying the issues of population size
management, even in the deterministic case, is a difficult and urgent task today [1]. The results
of constructing the control and stability of stochastic evolutionary models are considered in |2, 3].
In this paper, we study a logistic stochastic differential equation that describes the dynamics of
population growth in the form:
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da(t) = y(t)(x — —-)dt, (1)

where z(t) is the volume of the unstructured population.

The parameter K is called the population capacity, expressed in units of population (or concen-
tration) and is determined by a number of different circumstances, among which there are restrictions
on the amount of substrate for microorganisms, the available volume for a population of tissue cells,
food base or shelters for higher animals.

It is assumed that y(¢) is a random process describing the natural growth of a population with
an indefinite distribution density.

The main results of the work are the obtained conditions of asymptotic stability with respect
to probability in general for the described model. The method of moments studied questions of
exponential stability in the mean-square. Numerical illustrating examples were constructed in which
the dependences of population size on random population growth factors were studied and areas of
stability were constructed for different values of the distribution density. The conditions for the
existence of an equilibrium of such a system are obtained depending on the distribution density of
the random process y(t).
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Topological Conjugacy of Pseudo-Anosov Homeomorphisms
with Marked Points

Zhirov A.

Moscow Aviation Institute
alexei  zhirov@mail.ru

Let f: M — M be a pseudo-Anosov homeomorphism of a closed orientable surface. Let S1,.S2 C
M be two finite f-invariant sets consisting of non-singular points of contracting and expanding
foliations of f.

Question: Is there exists homeomorphism h : M — M such that h(Sy) = S2 and ho f =
f o h. This problem is of interest in connection with the problem of the topological conjugacy of
diffeomorphisms of surfaces with one-dimensional hyperbolic attractors.

The report will describe how to adapt the algorithms given in the author’s book "Topological
conjugacy of pseudo-Anosov homeomorphisms" (in russian), M., MTSNMO, 2013, to solve this
problem.
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On Attractors of Foliations with Transverse Linear Connections
Zhukova N. 1.

National Research University Higher School of Economics
nzhukova@hse.ru

The study of the dynamical properties of foliations is an actual area. The problems of the
existence and structure of minimal sets of Cartan foliations are studied in [1]. The problem of the
existence of attractors for foliations with transverse Cartan geometries are investigated in [2]. The
work [3]| is devoted to study the existence of attractors for Weyl foliations modelled on pseudo-
Riemannian geometry.

In this work we investigate the problem of the existence of attractors for foliations with transverse
linear connection.

We use the following most general notion of an attractor for a foliation.

Definition 1. Let (M, F) be a foliation. A subset of a manifold M is called saturated if it is a
union of leaves of this foliation. A nonempty closed saturated subset M of M is called an attractor
of (M, F) if there exists an open saturated neighbourhood U = U(M) of the set M such that the
closure of every leaf from U \ M contains the set M. The neighbourhood U is uniquely determined
by this condition and it is called the basin of this attractor; we denote it by B(M). If in addition
B(M) = M, then the attractor M is called global.

An attractor M of a foliation (M, F') is said to be transitive if there exists a leaf L which is dense
in M, ie., if L = M.

Recall that a minimal set of a foliation on a manifold M is a nonempty saturated closed subset
in M that has no proper subset satisfying this condition. Attractors coincided with minimal sets
give examples of transitive attractors.

Recall that a subgroup of a Lie group G is called relatively compact, if its closure in G is compact.
We denote by K =< A > the group generated by A.

Since in general foliations with transverse linear connection don’t admit an attractor, we specify
conditions that guarantee the existence of attractors which are minimal sets of (M, F') and prove
the following statement.

Theorem 1. Let (M, F) be a foliation with transverse linear connection of codimension q on n-
dimensional manifold M, 0 < q < n. Suppose that there exists a leaf L such that its linear holonomy
group contains an element defined by a matriz of the form D - A, where K =< A > is a relatively
compact subgroup in the linear group GL(q,R) and D = diag(d, ...,dy) with |d;| <1 for 1 <i <gq.
Then:

(i) the foliation (M, F) has an attractor M = L which is a minimal set;

(i1) if moreover, (M, F) admits an Ehresmann connection, then M = L is a global attractor and
a minimal set of (M, F).

A leaf L is referred to as proper, if L is an embedded submanifold of M.

Corollary 1. Let (M, F) be a foliation with transverse linear connection having a proper leaf L
satisfying the conditions of Theorem 1. Then:

() the leaf L is closed and an attractor of (M, F);

(ii) if moreover, (M, F) admits an Ehresmann connection, then L is the unique closed leaf and
a global attractor of (M, F).

An application to transversally similar pseudo-Riemannian foliations is considered. We also
describe the global structure of transversally similar Riemannian foliations which are not Riemannian
and investigate the structure of their global attractors.
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Finitely additive measures on the invariant foliations
of Anosov diffeomorphisms

Zubov D.

Higher School of Economics, Moscow, Russian Federation
dmitry. zubov. 98@Qgmail.com

For a C® smooth topologically mixing Anosov diffeomorphism F : M — M with oriented in-
variant foliations, we prove the effective equidistribution theorem for the leafwise averages of C?
functions on the (iterated) unstable leaves. The key tool is the analysis of the spectrum of the
transfer operator acting on an appropriate Banach space 25 of currents of degree k, where k is the
dimension of the unstable foliation.

The elements of B give rise to special families of distributions on the unstable leaves called finitely
additive measures. We give a (partial) classification of the finitely additive measures, invariant under
the stable holonomy map, in terms of the spectrum of the transfer operator.

We show that the asymptotics of the leafwise averages of C? smooth functions on the iterated
unstable balls are controlled by the holonomy invariant finitely additive measures.
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Research University Higher School of Economics (HSE) in 2018-2019 (grant number 18-05-0019) and
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l'eomeTpus ciioeHuii MOJINHOMHUAJIBHOTI'O POCTA
C KOHEYHO! TOIoJIOTHEl CJIoeB Ha 3-MHOT000pa3max

Boaoros /1. B.
OTUHT um. B.U. Bepxuna HAH Yxpauno
bolotov@ilt.kharkov.ua

B pabore paccmarpuBaioTcs 3aMKHYTBIE OPUEHTUPYEMbIEe 3-MepHBbIE MHOTO00pa3us C TJIaJKAM
OPUEHTHUPYEMBIM CJIOEHHEM KOPA3MEPHOCTH OIWH. DBBOAWTCS HOBBIN KJlacC CJIOEHUH — 3TO Tak

63



Ha3bIBaeMble B-CJI0eHUsI, KOTOPbIE OIPEIEISIOTCH CJIEIAYIONUM CBOMCTBOM CJIOEB: cjion B-ciioeHust
MMEIOT OTrPAHMYICHHYI0 MHTErPATbHYI0 abCOMIOTHYIO KPUBU3HY || ;| K|dp < oo B mekoropoii uh-
nynupoBanHoil Merpuke. I3 pesymbrara Kon-@occena [1] ciemyer, uro B-cioenusi copepxkar
CJIOEHUsI, JIOMYCKAIOIMe HEOTPHUIATEbHYI0 KPUBU3HY CJIOEB. Takwe cjoeHust ObLIH HAMU
uccienoBanbl B [4]. U3 pesymbraroB Xybepa |[2] ciemyer, uro B-ciioeHmsi mmeoT KOHEUHYIO
TOIOJIOTHIO CJIOEB, T.€. CJIOM I'OMEOMOP(MHBI 3aMKHYTBHIM IIOBEPXHOCTSIM C KOHEYHBIM (BO3MOXKHO
IIyCTBIM ) 9HCIOM IPOKOJI0B. Kpome Toro, ciion B-citoenust 1o/KHbBL IMeTh He 6oJtee, 1eM KBapaTH-
HBII pocT obbeMa cioeB [3]. DTo mO3BOJIsSET HAM JOKa3aTh TEOPEMY, YTBEPXKIAMILyo, 4To B-
CTIOCHUS SIBJISIOTCS CIOCHUSMU TOYTH Oe3 rosonomuu. Mcmoms3ys pesynbrarsl [ DKTOpa MOXKHO
IOKa3aTh, 9TO KJIACC CJOEHUU MOYTH 0€3 TOJIOHOMUU COBIIQJIAET C KJIACCOM CJOEHUN HMEOIUX
MOJIMHOMUAJIBHBIN POCT CJIOEB, €CJTH TOMOJIOTHS CJI0eB KOHedHa. PaccmarpuBaeTcst oOpaTHast 3a,1a4a.
[TokazbiBaeTcsi, 9TO HE BCIKOE CJIIOGHHE TOYTH 0e3 TOJOHOMUU C KOHEYHOU TOIOJIOTHENH CJI0EB
apjsieTcst B-cioenumem. B To ke BpeMms JI0Ka3bIBAETCs, UTO 0OPATHOE YTBEPXKICHUE BCE YK€ MMeeT
MECTO JJIsi CODCTBEHHBIX cJjioeHuil. B wacTHOCTH, M3 TpejcTaB/ieHUs] 3-MHOrooOpa3ust B BHJIE
OTKPBITOM KHUT'H CJIEJIYET, UTO JII0OOE OPUEHTHPYEMOe 3aMKHYTOe 3-MHOroobpasme JoIyckaer B-
CTIOCHYE.
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CuHTe3 ONTUMAJIbHBIX MPOIIECCOB CO CMEHOI ypaBHEHUIl JBUXKEHUS
Boprakosckuii A. C.

Mocxrosckutl a8uaUUOHHBLT UHCTUMYIM
asbortakov@mazil.ru

PaccmatpuBaecTest 3a1aua ONTUMAJIBHOIO YIIPABJAEHUS ¢ KOHEYHBIM YUCJIOM IEepeKodeHnii. B
MOMEHT IIePEeKJIIOUeHHs] IIPOUCXOIUT CMeHa MaTeMaTHYeCKON MOJIen CUCTeMbl yrnpasienus [1,2,3],
a UMEHHO: MEHSIOTCS ypaBHEHUS JIBUKEHUS, TPOCTPAHCTBO COCTOSAHUI, MOIYCTUMbIE YIIpABJICHUSA U
T.11. Takue nepek/iioueHns, HalpUMeD, XapaKTePHBI /It 332 yIPABJICHUS I'PYIIIIAMHI JIETATEIbHBIX
almnapaToB, KOTIa HM3MEHSIeTCS KOJUYIEeCTBO YIIPaBISgeMbIX 00beKTOB. IloydeHbl mocTaTOYHbIE
YCJIOBUSI ONTUMAJIbHOCTH, IIPUMEHEHUE KOTOPBIX JIEMOHCTPHUPYETCs Ha aKaJeMUYeCKUX MIpuMepax
IPYIIIIOBOTO OBICTPOIEHCTBHSI.

Baaromapuoctu. Pa6ora Beimosnena o 3agannio Ne 1.7983.2017/BY Munobpuayku PO.

1. ITocranoBka 3amaum. Ilycre Ha 3amaHHOM mpoMexyTke Bpemenun 1 = [to,tp]
NUHAMHAYIECKAsT cucTeMa coBepiinaeT N IepeKsiovYeHrnii B MOMEHTBI BpeMeHH t1,...,tn: to < t1 <

< ty < tp. Mexny HepaBHBIMEU TOC/IEIOBATEILHBIMUA MOMEHTAMU ITEPEKJTIOUEHNN COCTOSHUE
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CHUCTEMBI U3MEHsIeTCs HeIPePhIBHO:

Ti(t) = filt, zi(t), us(t)), i <t <tiva, (1)
a B MOMEHTBI IIepeKﬂIOquI/Iﬁ — JAUCKPETHO:

xi(ti) = gi(ti,xi—1(ti),vi), i=1,...,N,

rae z;(t) € X; C R™ — cocrosinme cucrembl mocse i-ro nepeksrodenus, u;(t) € U; C RPi
— ylIpaBjleHHe HeNpepLIBHBIM ABUzKeHmeM, v; € V; C R% — ynpasienue nepekmodenweM. Ha
MHOKEeCTBe JIOIYCTUMBIX 11porieccoB Dy (to, o) 3aman GyHKIMOHAIL

N tiv1 N
1§ (to, wo, d) = Z/ £t i), wi®)dt + Y giF (ti, zia(t), vi) + Fa (o (tr). (2)
i=0 Vi i=0

Baeck (to,xp) — HAYAIBHOE COCTOSHIUE, g;r — HeoTpulareabHas (QyHKInUA. 1pedyercs HaWTH
HaMMeHblllee 3HaueHne pynknuonasa (1) u onrumasnbublii porece d* € Dy(to, o), Ha KOTOPOM ITO
3Havenue jocruraercs. KomumaectBo N 1 MOMEHTBI IIEPEKJIIOUEHU t1, . . ., I 3apaHee He 3aJaHbl U
HAXOJIATCs PU MUHUME3AIMU (DyHKIHOHAIA (2).

2. Merop pemtenusi. O6osznadnm [gepes ¢;(t, ;) dynknuio nensl (bynkmumo amumibrona —
Akobu — Bemvana (I'4B)), paBayro MuHIMAJIbHOMY 3HAYEHUIO (DYHKIMOHAJIA OCTABIIUXCS [TOTEPh
I;(t, z;,d) va muOXKecTBe Dj(t, ;) JOMYCTUMBIX IIPOIECCOB II0CJIE §-T0 TepeKJouenns. Oupeenm
obpasyrowyro byuknuu 1ensl, sHauenne ¢F(t, ;) KOTOpPOil pPAaBHO MHHHMATLHOMY 3HAYEHIIO
bynxmmonana ocrasmmxcst norepb 1F(t,x;,d) wa muoskecte DF(t,x;) MOMYCTHMBIX TIPOIECCOB
¢ k ocTaBIIUMUCS MEPEKJIIOUEHUsSIMU TIocje i-ro. Hakowner, 06yrnosuyuorntoli (PyHKIMENR [eHbI
¢i(0,z; 9|7, x; +) Bynem Ha3bIBaTH perenue 3aaun Jlarpaszka s cucremsl (1) ¢ purcupoBaHHBIME
KOHITAMY TPAEKTOPHUH

zi(0) =9, wi(T) =124, /97 2, zi(t), ui(t))dt — min,.

Ota dyHKIms yaosaeTBopser ypapHenuio ['Y1B ¢ mHyieBbIM TepMUHAILHBIM YCIOBUEM

i |29 n 0¢i
wel; | Ot Ox;

Fi(ts 2, 01) + f?(t,:ci,ujﬂ —0, Gi(rz)mai) = 0. 3)

BcenomorarebHble (DYHKITME CBSI3aHBI MEXKIY coboil n "HacTosimmeit" (yHKIue 1eHbl paBeHCTBaMU

pilt,2i) = min of(t, 22), (4)
k . : k . k—1
it z:) = min min {@- (t, zilT, y) + Join i (7 g (1,9, 0) + 95 (1,9, v)} } ()

Ipore/ypa pemennus ypasuenuii (3)—(5) naunnaercs ¢ Hy/eBbx obpasyromux @) (t, x;), KoTopble
V/IOBJIETBOPSIeT ypaBHEeHUIO (3) ¢ KOHedHbIMHU yeaosuamu @) (tp, x;) = Fj(z;), i € Z4. Ocranbuble
obpasyIolue HAXOAsITCs COMIACHO PEKYPPEHTHOMY ypaBHeHuto (5), a dyHKIuu nensl — 1o dpopmyJie
(4). Onepanuu munnmusaruu B (3)—(5), onpesessoT onTuMabHble yIpaBIeHHs HEIPEPbIBHBIM JBH-
JKEHHEM W NEePEKTIOUEeHUSIME, KOJTNIECTBO U MO3UIUH MEPEKTIOTEHHN, ITO MMO3BOJISET CHHTE3NPOBATH
OITUMAJIbHBIE TIPOIECCHI.
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O 63poBcKoiil KaccuduKaIum TONOJIOTUYIECKOM £-3HTPOITUN
HEAaBTOHOMHbBIX JIMHAMUYECKUX CUCTEM

Beroxuu A. H.

Mocxosckuii 2ocydapcmeennoiti ynusepcumem umenu M. B. Jlomonocosa
anveto27@Qyandez.ru

Hamomumm onpe/ieienne TOMOJIOTUYIECKOH SHTPOINHN JIJIsT HEABTOHOMHBIX JIMHAMUIECKIX CHCTEM
[1]. IIycrs (X, d)— KoMIakTHOE MeTpHtIecKoe IpOoCTpancTBo, F' = (f1, fa, .. .)— mOC/I€10BATEILHOCTD
HenpepbIBHLIX oToOpazkenuit u3 X B X. Hapany c ucxommoit merpukoit d ompenenum Ha X
JIOMOJTHUTEJIbHYIO CHCTEMY METPHUK

dy (x,y) = max d(f"(x), f*(y)),

0<i<n—1

(f'=fio---of, fP=idyx), z,y€X, neN.

Hnst Besikux n € N u e > 0 obosnaunm uepe3 Ny(F,e,n) mMakcumasabHOE 4YUCIO TOUYEK B X,
IIOITapHBIE df -PaACCTOSTHUS MEXKJy KOTOPBIMHU OoJjibliie, deM €. Takoil HaOOp TOYEK Ha3bIBAETCSI
(F,e,n)-ornenenubiv. Torga monoaozuveckot snmponuet, HEABTOHOMHON JMHAMUYECKOH CHCTEeMbI
(X, F') Ha3bIBaeTCsl BEJMYUHA

- 1
htop(F') = lim lim sup — In Ny(F, €, n). (1)
e—0 n—oo N
OTMeTHM, YTO TOIOJOIMIECKas SHTPOIUS He 3aBUCUT OT BBIOOpa METPHUKH, MOpOoKjaromeil Ha X
JIAHHYIO TOIOJIOTHIO, O9TOMY ompe/iesierne (1) KOppeKTHO.
ITo moc/ienoBaTeIbHOCTH HEIPEPBIBHBIX 10 COBOKYIIHOCTH II€PEMEHHLIX OTOOpasKeHMit

F=(fi,fe...), fi MxX—=X (2)

obpazyeM (PyHKIIAIO
p = hiop (F' (1, -))- (3)
[Tpr mpomssosbublx M, X u jmag moboit mocsenoBaTeabHOCTH OTOOpaxKkeHuit (2) dyHKus
(3) upunajyiexkuT Tperbemy 63poBckoMy Kiaccy [2]. B cayuae, korma X — KaHTOPOBO

COBEPIIIEHHOE MHOXKeCTBO 1 M — MHOYKECTBO UPPAIMOHAJIbHBIX dnces Ha orpeske [0; 1] ¢ MmeTpukoii,
MHYIUPOBAHHON CTaHIapPTHON METPUKON BEIIECTBCHHON HpPAMON, Hafijiercs moc/ie0BaTeJIbHOCTh
orobpazkenuit (2), st KoTopoit dyHKIws (3) BCIOLY pa3pblBHA U He IPUHAJJIEIKUT BTOPOMY KJIACCY
Bapa [2].

Hapsiny ¢ dynakuueit (3), st IPOU3BOJIBLHOTO MOJOXKHUTEIBHOIO € PACCMOTPUM (DYHKIIUIO

1
w— h(F(u,-),e) =limsup — In Ng(F,e,n). (4)

n—oo N
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Teopema 1. /s 110600 nocaedosamenvrocmu omobpasicenuts (3) u das kasrcdozo € > 0 dynxyus
(4) npunadaestcum 6mopomy 63po8CKOMY KAACCY.

Teopema 2. Ecau M mempusyemo noanoti mempuroti, mo 0is kaotcdozo € > 0 mHodHCECTIBO MOYEK
NOAYHENDEPBIEHOCTNU CBEPTY PYHKUUY (4) ABAAEMCA 6C100Y NAOMHBM MHodicecmeo muna G.
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IIpumenenne KpaiiHUX ITOIAPTYyMEHTOB M HA/IapPryMeHTOB
K MOUCKY IJIO0AJIbHBIX 3KCTPEMYMOB R-3HauHbIX DYyHKIIHUNI

Tankuna O. E., laakuuna C. FO.

Huoicezopodekuti eocydapemeennuits yrusepcumem um. H.H. Jlobawesckozo
olegegalkin@ya.ru

[Tycre X — BemecrBenHoe JmHeitnoe npocrpancTso (JIII) u D — ero nommuoxkectso. Eciu
sajana dyukiws f: D — R, o 6ygem obosnadars depe3 Gr(f) ee epagur {(x, f(x)) | = € D},
gepe3 Sub(f) — ee nodepagpux {(z,y) € D x R | y < f(x)}, u uepe3 Epi(f) — ee nadepadur
{(z,y) € Dx R |y > f(x)}. I'nobarvroti maxcumym dynryuu f aa D obosHauum depes maxp f,
a MHOXKECTBO TOUEK, TJIe OH JocTuraercs — 1depe3 Argmaxp f. AHaJTOrMIHO BBOAATCS OOO3HAMCHUST
minp f u Argming, f. Yepes supp f u infp f obosnatumm, cOOTBETCTBEHHO, CYNpEMyM U UHPUMYM
dyuknun f Ha D.

Hamomuum (cm. [1, § 1.18]), uro ToUKa BBIIYK/IOrO MHOYKECTBA HA3BIBACTCS Kpatited, eCJl OHa He
ABJISIETCs BHYTPEHHEli HU JIJIst KAKOrO OTPE3Ka, JIEXKAIIero B 3TOM MHOXKecTBe. Bunyrayo oboroury
muO)KecTBa D Gyem obozHauars depes Conv (D) win D, a mHootcecmeo €20 kpalinur movex — depes
Extr(D).

Beenem momsgTHS KpaliHero momapryMenTa U KpaifHero HaIapryMeHTa.

Ounpenesienne 1. [Tyemv X — JIII w D C X. Kpaitaum mnogaprymenTom (coomeem-
cmeenno KpaiiHum HajzaprymentoM) dynrkuuu f: D — R nasosem apeymenm x (mo ecmo
nepeylo Komnonenmy) a0601 kpatinetd mouku (x,y) mmnoocecmea Conv(Sub(f)) (coomsememeerto
Conv(Epi(f))). Mnoowcecmeo scex kpatinur nodapeymermos (coomeemecmeerno Hadapeymermos)

dyrnkyuu  f na mmoorcecmee D Gydem  obosnauams wepes ExtrSA(f, D) (coomsemcmeerito
ExtrEA(f,D)).

Bameuanme 1. Ouesudno, wuwmo swnoansomes pasencmea minp(f) = —maxp(—f),
Argming(f) = Argmaxp(—f) u ExtrEA(f,D) = ExtrSA(—f,D). Iloomomy u3 106020
YMBEPHCOEHUA NPO MAKCUMYMDBL U KPATHUE NOOAPLYMEHMBL 6blmekaem J60tcmeenoe Ymeepicoerue
NPoO MUHUMYMbL U Kpatinue nadapeymenmos (u 1aobopom,).

Ilpengmoxkenne 1. Ecau X — JITuw D C X, mo daa amoboti pynkuyuu f: D — R eepuv examouenus

Extr(D) C ExtrSA(f, D) C D u Extr(D) C ExtrEA(f,D) C D.
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Teopema 1. Ilycmo X — JIII, D C X u 3adanor pynxuyuu f: D — R, g: D — R, v: D — R,
npuvem v cmpozo noasoscumenvna wa D. Ilycmsb, Kpome mozo, cmpoz2o 8unykAa Ha D Pynryua
(g—M)-v, 2de M = supp(f/v+g) < 0o. Toeda sce mouku 2a06arv1020 makcumyma na D Gyrnxyuu
f/v+ g asamomes xpatinumu nodapeymenmamu dynruuu f na D, mo ecmv Argmaxp(f/v+g) C
ExtrSA(f, D).

N3 teopemnr 1, ¢ yuerom 3amevanus 1, BbITEKAET JIBOMCTBEHHAS TEOpeMa.

Teopema 2. Ilycmo X — JIII, D C X u 3adawor pynkuyuu f: D — R, g: D — R, v: D — R,
npuvem v cmpozo noaoscumenvna na D. Ilycmu, xpome mozo, cmpozo coznyma na D dyrxyus
(g—m)-v, 2de m = infp(f/v+g) > —oc0. Tozda ece mouru 2aobarvrozo murumyma na D dGyrnkyuu
f/v+ g asamomes xkpatinumu nadapeymenmamu gyrkyuyu f wa D, mo ecmv Argming (f/v+g) C
ExtrEA(f, D).

Bameuanne 2. Mnoowcecmea ExtrSA(f, D) u ExtrEA(f, D) ne sasucam om dynkuyui g u v.
Hosmomy, matids amu MHOMHCECTNBA 00UH PA3, MOHCHO NPUMEHAND UL C NOMOULbI meopem 1 u 2
das noucka sxempemymos gynruud /v + g npu pazsuunux g u v.

Metoa nmoucka rijobajIbHbIX 3KCTpeMyMoB. Ha ocHOBe MOJIyUYeHHBIX PE3Y/IbTaTOB MOXKHO
[OCTPOUTD CJIEJLYTOIIHI METO/I TOUCKA, NI00aIbHBIX 9KCTPEMYMOB HEKOTOPBIX (byHKIuit Buja f/v+g,
He Tpebytonuii nuddeperiupyemMoct f B KaKOW-Iub0 TOUKE:

1) y6exmaemcst (Hapumep, ¢ MOMOIIBLIO TeopeM 1, 2 MM aHAJIOIMYHBIX UM YTBEPIKJIEHUil), ITO
TOUKH T100abHOrO SKCTpeMyMa dbyHkimu f/v + g npunajgexar muoxecrsy ExtrSA(f, D)
nim muo)kectBy ExtrEA(f, D);

2) maxozuMm HyzxkHOe MHOKecTBO ExtrSA(f, D) win ExtrEA(f, D);

3) BbrumcssieM TIOOAMBHBIN SKcTpeMyM dyukmuu f/v + g #a muOxkectBe ExtrSA(f, D) wim
ExtrEA(f, D).
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CamooprannsoBaHHasi KpUTUIHOCTh B Teopum OJmrKaiireii oKpecTHOCTH
9JIEMEHTOB MEPKOJISIAUOHHBIX CUCTEM

T'epera A.H.

Odecckas HAUUOHANBHAA AKGICMUA NUWESHLT METHOA02UL
aherega@gmail.com

B pabore, mpeacraBieHHOW B JOKJIaJe, B paMKax TeOpUHM OJimKaiieit OKPeCTHOCTH
[1-3] 2sileMeHTOB NEPKOJISIMOHHBIX KJIACTEPOB AHAJIMTUYECKA U CPEJCTBAMU KOMIIbIOTEPHOIO
MOJIEJTUPOBAHNST UCCIIETYIOTCsI CBOICTBA KJIAaCTEPHBIX CUCTEM C CaMOOPraHu3alluei.

[Ipn BapbUpOBaHUM CTPYKTYPbI MaTPHUIILI, Ha KOTOPOM CO3/IaéTCs IMEPKOJIAIMOHHAs CUCTEMA,
MOIUMpUKAIINY YCJIOBUI COCTUHEHN KJIACTEPOB, U3MEHEHUN BU/Ia DJIEMEHTOB U JIPYTUX ITapaMeTpPOB,
KaK W3BECTHO, MEHSETCs THI MOJEeJUpyeMbIX 3aiad [4-14]. Bpemenwe mnonsitusi Gumrkaiimieii
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OKPECTHOCTU — IEPKOJIAIMOHHBIX IOJIEl MEHBIEro Macinraba, <«OIMHCAHHBIX» BOKPYT 3JIEMEHTOB
MCXOJIHOM MATPHUIIBI, — TakKyKe MPUBOIUT K HOBOMY THUIIY MEPKOJAIMOHHBIX 33Ja9, KapAUHAJIBHO
pacimpsieT BO3MOXKHOCTU HCCJIEJIOBAHUS CTPYKTYPbI U CBOHCTB 00OPA3yIONUXCS KJACTEPOB,
ITO3BOJISIET JIETAJIU3NPOBATH U3yUEeHHUE ITPOIECCOB UX MEHE3NCA.

B noxnanme ommcana rpynma aJrOpUTMOB KOMITBIOTEPHOTO MOJEIMPOBAHUS MEPKOISIITMOHHBIX
CHUCTEM Ha CJIyYafHBIX PEIIETKAX MYJbTUMACIITAOHBIX <«y3JI0B», COCTOSIIUX U3 MEPKOJISIIIMOHHBIX
KJIACTEPOB MEHbIIero Maciiradba Ipon3BOJILHOM CTEleH: BJI0KEHUS 110 00pasity MaTpérmku. [lomumo
cTaHJapTHOrO Habopa MapaMeTpPOB MEPKOJISIIMOHHBIX cucteM B pabore meronom Monte-Kapio
paccUnTaHbl AHWU30TPONHS, JIAKYHAPHOCTb M paJuyC THPAINN KJIACTEPOB, WHIAEKC pOCTa HUX
MOIIHOCTH, & TaKzKe WHMOPMAIMOHHASI U [I€PBasi KOPPEJISIMOHHAS PA3MEPHOCTH CIieKTpa PeHbu.

B pabore aHaJUTHYECKU OIPeJIeJeHbl Mephl (B CMBICJIE TEOPDUU PA3MEPHOCTH) HA MHOYKECTBE
MPOBOJAIINX YIACTKOB MEPKOJISITMIOHHOTO ITOJIsT; PACCUNTAHBI MHIEKCHI, OMUCHIBAIOIINE CKEHIMHIOBOE
[IOBEJICHUE SHTPONHUU UX pa3dueHus; BBEICHO IIpeJcTaBieHne 00 OTHOCUTEIbHONW CTeleHn
YIOPSIOYEHHOCTU CTPYKTYPBI, IOKA3aHa ITPUTOJHOCTH 9TOH BEJIMIUHBI JJIsi OIIEHKHU Jipeticha CBOHCTB
6omrkaiiieit okpecrroctu [1-3]. Pacduérel poBeieHbl st JIByMEPHBIX PEIIETOK € TPEXYPOBHEBBIME
BJIOXKEHUSIMU B OJIM2KAAIIINX OKPECTHOCTSX IJIEMEHTOB.

OT/1eJIBHO UCCIIEIYIOTCST CBOMCTBA MYJIBTUMACIITAOHON CHCTEMBI ITEPKOJISIIIMOHHBIX CTPYKTYD Ha
BBeIEHHBIX B [11] kKoBpax CeprnuHCKOro ¢ rubpuHON pa3sBeTBIEHHOCTDIO.

B pazBuTme koumneniuun OJimKaiiieil OKPEeCTHOCTU UCCIEIOBAHBI HEKOTOPDLIE ACIEKTDLI BJIASTHIST
[IPOIIECCOB CAMOOPTaHMU3AIMK Ha CBOMCTBa HEPKOJSIMOHHON cucTeMbl. B jokiajie mnpejcrasiiena
KOMIILIOTEpHAsI MOJIeJIb YIIPABJIEHUsS CTPYKTYPOH IEePKOJISIIUOHHBIX KJIACTEPOB B IPOIECCE UX
dbopmuposanus [15].

[lepkonsanuonnble 3a7add € caMOOpraHm3alueil — HeoTbeMJeMas COCTABJAIONAsl TEOPUH
caMOOpraHu3yIoIIeiicss KpUTUIHOCTH, TIpe IIozKeHHOi B |16, 17|, B iepByIo ouepe/ib, Jjisi OCMBICJICHUST
CBSI3M MEXKJIy JIOKAJBHOI OpraHm3alueil CTpPyKTYPbl U MEXaHHM3MOM pa3BuTusi KpurudHoctu [3-10,
12, 13].

Kak wu3BectHO, K HamboJiee OOIMUM 3aKOHOMEDHOCTSIM 3BOJIIOIUH ITEPKOJIAIMOHHBIX CHUCTEM
C B3aUMOJIEHCTBYIONIMMHU 3JIEMEHTAMHU OTHOCHUTCS CYIIECTBOBAHME B HUX HEPABHOBECHBIX
KBa3UCTAIIMOHAPHBIX COCTOSAHUM, BO3HUKAIONIUM 3a CYET MHOTOMACHITAOHBIX KOPPEJAIuil B
IPOCTPAHCTBE M BpeMeHH [18|: mpocrpaHCTBeHHBIE KOPPEJISIN 0OHAPY KUBAIOT cebsi B CTPYKTYpPE
HMEPKOJIUPYIONUX (DPAKTAIbHBIX MHOXKECTB BOJIM3U [TOPOra IPOTEKAHNS, BDEMEHHBIE — B JIBUXKEHUN K
TaKUM COCTOSTHUSIM IIPU MEJJIEHHBIX BO3JENCTBUAX HA CUCTEMY, ITO3BOJISIIONINX IPOTEKATH ITPOIECCaM
camoopranuzarnuu. llpu 3ToM crpemisieHre K CaMOOPIaHU3YIOMIENHCS KPUTUYHOCTH IPUOOPeTaeT
YHUBEPCAIBHBII XapaKTep, 4TO MOXKHO IOHSITh B KOHTEKCTE IIPUHIIUIA HAMMEeHbIIero jeicraus [18].

ITocTpoenne KaacTepHOM cHCTEMBI B Momeau mpoBomuTcss wmertomoMm Monte-Kapmao ¢
HCIIOIb30BaHUEM HTEPAIMOHHOTO AJTOPUTMa PEATH3AINN B3AMMOIEHCTBUS €€ 3JIEMEHTOB JJI JBYX
TUIIOB 3aKOHA NPUTIKEHHUS: C CHJIAMHU TPOINOPIUOHATBHBIMA }% u % [15]. B pabore usyuena
3aBHCHMOCTb CTPYKTYPBI W CBOUCTB CAMOOPTAaHU3YIOIIMXCS KJIACTEPOB OT CKOPOCTH TeHepalnun
CHACTEMBI, XapaKTEePHbIX 3HAYEHWUI JJIMHBI KOPPEJSAINNA, & TaK:Ke OT CTElEeHW CaMOOPTaHU3aIlNH.
s aTOrO MCCIenoBaHa WX 3aBHUCHMOCTH COOTBETCTBEHHO OT KOJIMUIECTBA TACTHI], T€HEPUPYEMBIX
Ha TIEPKOJIAIIMOHHOM II0JIe HA KaKJIOM ITare CO3JaHus OECKOHEYHOrO KJIACTEPa, OT MAKCUMAJHLHOTO
pacCTOAHMS, HAa KOTOPOM B3JIEMEHTHI CHUCTEMBI MOI'YT OOBEIUHATHCA B KJACTEpP, a TaKkKe
OT KOJIMIECTBA AKTOB B3aUMOJEHCTBUS dYacTuil.  ANIpOKCHMAIUeil pPe3yJIbTaTOB MOJIEJIBHBIX
9KCIIEPUMEHTOB IOIYUeHbl aHAJIUTHYECKHE BBIPAXKEHUSI IS 3aBUCHMOCTH OT ITHX IapaMeTpOB
MOIIHOCTH GECKOHEUHOIO KJjacTepa, CTeleHN aHM30TPOINH, PAJIIyca TUPalui U JaKyHapHocTu [15].
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PaccmoTpuM 3aMKHYTYIO 2-MEPHYIO ITOBEPXHOCTH KOMILIEKCHON CTPYKTYPBI, ITPEICTABJIEHHYIO
B BUJIE MHOTOYTOJIbHUKA C 2g-CTOPOHAMU, TJle g — ITO POJ MOBEPXHOCTU. PaccMoTpum OMIbspL
B 9TOM MHOTOYTOJIbHUKE U TPAECKTOPUHU, HAYUHAIONIMECS Ha, T'DAHUIE MHOTOyrojbHuka. Cpenn
HAX €CTb TPAEKTOPHUHU, KOTOPBIE OIPEIE/AIOTCI KOHEYHBIM YHC/IOM OTPAaXKeHwil, a Ha caMoil
MMOBEPXHOCTHU SIBJISIIOTCS 3aMKHYTBIMUA. B OUJIbsipie MbI IIPEJIIoaraeM, UTo Yroj MaJleHus PaBeH
VIJIy OTpakeHusi. [ OMOTOIMYECKYIO HETPUBUAJILHOCTH TAKMX B3aMKHYTBIX TPACKTOPHUI MOXKHO
JIETEKTUPOBATDH € TOMOIIBIO UTEPUPOBAHHBIX MHTEIPAJIOB OT IOJIOMOP(MHBIX M aHTUTOJIOMOPMHBIX
dopMm Ha mnoBepxHocTu. He Bce meTnu, mOpeiCcTaB/I€HHbIE TPACKTOPUAME OWibsapia, OymayT
FOMOTOIUYECKH TPUBUAJIBHBIMU. Hampumep, JiJisi IOBEPXHOCTH POJIa ¢ = 2 CYIIECTBYET TPACKTOPUS
HAIIEro OUJIbsIPJIA, KOTOPast 1ehOPMUPYETCs: B TOPJIOBUHY (FOMOTOITHA FOPJIOBUHE). DTa TPACKTOPUSI
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Ha CaMOHl MOBEPXHOCTH IIPEJCTABISIET HEKOTOPYIO 3aMKHYTYIO KYCOYHO-IVIAJIKYIO KpuUByM0. KEé
FOMOTOINMYECKas HETPUBUAJIBHOCTD JIOKA3BIBAETCA C IIOMOIBIO 2-UTEPUPOBAHHBIX WHTETPAJIOB.
Kpenyens (moBepxnocTh poja 2), Ha KOTOPOM paccMaTpuBaeTca Hamra meriasa, B C? zamaercs
CJIEIYIOIINM YPaBHEHUEM:

y2:(x—a1)'-.-‘($—35)'

BosbmeMm rosomopduyio dhopmy w.

zdx

w =

VE—a) ... (z—as)
nTerpaJ BIOJb IeTeIb OT 3T0i To10MopdHOi 1-hopMBI paBeH HyJTIO fv W= f% w = 0. Ognaxo

TS 2-UTePUPOBAHHOTO MHTErpaJjia BIOIb MeTeb Y U 7Y, TIe Yy = alblal_lbl_l = asgboay 162_ U imeenm
B CIJIy CBOMCTB 2-UTEPUPOBAHHBIX MHTEPAJIOB

2/ww—2/ ww—/ ww+/ ww =

¥ Yo alblaflbfl agbgaglbgl

—/w/w—/w/w+/w/w—/w/w>0.
al b1 al b1 a2 b2 a2 b2

[Tocennee HepaBeHCTBO cieflyeT U3 OWIMHENHBIX cooTHomreHuii Pumana. Urax, f7 ww # 0,
YTO BJIEYET 3a CODOl HErOMOTOITHOCTH HYJIIO IETJIA 7y, IPEJICTABIEHHON TpaeKTopuei Omibsapia.
C 1moMoIIbi0 MUTEPUPOBAHHBIX WHTEIPAJIOB IIPOU3BOJIBHON KPATHOCTH MBI MOXKEM JIETEKTUPOBATH

TOMOTOIMYECKYIO HETPUBUAIBHOCTD IMETEJIb, KOTOPBIE MPEICTABISIOT CODOM TPAaeKTOPUHU OUIbAPIIa
Ha IIOBEPXHOCTHU.
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[3] Chen K.T. Iterated integrals of diffferential forms and loop space homology. Ann. Math.
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O 6udypkanum Mexkay pPa3jIMIHBIMU TUIIAMU
COJIEHOUJAJIbHBIX 0A3MCHBIX MHOXKECTB

Ncaenkosa H. B.
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B rnokmame paccmarpuBaercst kiace A-muddeomopdusmor Cwmeitna-Bueropuca, ompemess-
FOIUICS ¢ TOMOIBIO0 6a30BBIX A-3HIOMOP(MU3IMOB MHOI00Opa3uil, pa3MEePHOCTh KOTOPBHIX MEHBIIIe
PasMepHOCTH HecylIux MHoroodpasuii A-muddeomopdusmon, n comepxkamunii JIE-orobparkenus
Cwmeiiyia. B obmem cirydae HebiryxKgatoiiee MHOX)KecTBO A-auddeomopdusma Cmeitna-Bueropuca
HE COBIIAJIA€T C MHBAPUAHTHBIM COJIEHOWJIAJIbHBIM MHOYXKECTBOM, a Pa30MBAeTCsi Ha TPUBHUAJIbHBIE
U HeTpPUBHAJbHBIE 0A3UMCHBIE MHOYKECTBA. 3JECh IOKA3aHO, UTO MMEETCsl B3AUMHO OJHO3HATHOE
COOTBETCTBHE MEXKJy TPUBUAJIBHBIMU (HETPUBUAIBHBIME) OA3MCHBIME MHOYKECTBAME 0GA30BOTO
A-sanomopduzma u  A-muddeomopduzma  Cwmeitra-Bueropuca. s Haza -uHBAPUAHTHOT'O
6a3uCHOrO0 MHOXKeCTBa 0a30BOro A-s3HpoMopdu3Ma IPUBOJUTCS TOTHOE OIUCAHUE COOTBETCTBYIO-
Er0 HETPUBUAJIBHOTO 6a3ucHOr0 MHOXKecTBa A-muddeomopdusma Cwmeitna-Bueropuca. Ha ocroe
[IOJIYIEHHOTO OIHUCAHUST CTPATCS OMPYPKAIMH MEXKJY Pa3JIdIHBIMUA TUIIAMHA COJEHOUIAJTBHBIX
6a3MCHBIX MHOXKECTB. DTH 6udypKaum MOKHO pacCMaTPUBaTh Kak OudypKayuu pa3pyieHust (1
POZKJIEHNST) COJIEHOUIAJIbHBIX DAa3MCHBIX MHOXKECTB. B Jokijaje Gyuer npejcrasieHa 6udypkarust
nuIst 3-MepHoit cepsr S3.

dyaknun Mopca Ha TOBEPXHOCTHAX C KpaeM
Kupunnos U.

Lomonosov Moscow State University
tkirillov@abe.math.msu.su

B mannbrit pabote MBI paccMaTpuBaeM mpocThie (byHkmn Mopca Ha IBYMEPHBIX TTOBEPXHOCTSIX C
kpaeM. Ilycts M —3T0 1ByMepHast KOMIIAKTHAS CBsA3HAS TOBEPXHOCTH C 33 JaHHON CUMILICKTUICCKON
dopmoit w. Huddepeomopdpusm & : M — M HasbBaeTcsd CHMILIEKTOMOPQMU3IMOM, €CJIH OH
coxpassieT popMy w. OCHOBHBIM PE3yJIbTATOM PAOOTHI SIBJISIETCS KIACCUMDUKAIINS TPOCTHIX (PYHKITAN
Mopca OTHOCHTENBHO JeHCTBHS TPYNNBI CHUMIUIEKTOMOpGuU3MOB.  OKa3bIBaeTCs, UTO MOJHBIM
MHBapUaHTOM siBjisieTcs rpad Pubba dyHKmm, cHabKeHHON MepOil HEKOTOPOT'O CIIEIUATBLHOTO BUIA.

BaaromapraocTtn. Pabora Beimosnena npu nopgep:kke I[Iporpammer Ilpesugenta PO
HOJJIEPKKHU BeyIux HaydHbX ko (rpanr HIII-6399.2018.1, cornamenune Ne 075-02-2018-867) u
Poccwuiickoro donna dynmamentanbubix uccaegosanuit (rpant Ne 16-01-00378-a).
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MaremaTudeckasi MOJieJib KPpU3UCa B MeJarormveckKnx CucTeMax
Konomesa 1. B.!, Cubupesa A.P.2, Cubupes B. B.?

YVH TA, 2Val'lly
irinakonopleva2014@yandex.ru, sibireva@bk.ru, bbccbb@rambler.ru

Maremaruyeckue Mojen (ByHKIIMOHUPOBAHUS IEIATOTHICCKUX CHUCTEM PACCMATPUBAIOTCA B
paborax 2Keranosa B.I., Kuscosa C.H., Munosanosa B.Il., Bynanosa B.I'., Uxaprumsuiun A.T.
u ap. B [1] upemioxena cuHepreruyeckasi MOJeb [1€JIArOIUIeCKOli CHCTEMbI B [IEPUOJ KPU3HCA.
JlaguMm ee MaTeMaTHIeCKYI0 HHTEPIIPETAIINIO.

[Tycrs x(t) — NJIAHOBO-IPOTHOCTHYECKAs JIEATENLHOCTh CHCTeMbI, Y(t) — JesATebHOCTH 110
CO3JIAHWIO YIIPABJIEHUECKOH CTPYKTYDbI, z(t) — nesenomaranme. COCTOSTHUE CHCTEMbI B MOMEHT
KPU3HUCA OIUIIEM CHCTeMOU TuddepeHnalbHbIX YPaBHEHUIA:

&
gy =bx + cy — dzxz, (1)
2z

CKOpOCTb TIOCTPOEHUsI HOBOI MPOrPAMMbl CTAOUILHOTO (DYHKIIMOHUPOBAHUSI CUCTEMbI 4(t) 3aBUCHT
OT ee CHOCOOHOCTU K IIJIAHOBO-IIPOTHOCTUYECKOl JesITebHOCTH Z(t) M 3aHATOCTH CO3JAHUEeM
HoBoro yupasienust y(t). CkopocTb HOPMUPOBAHMsI HOBOIl OPraHU3alMOHHO-YIPABIEHIECKOIT
CTPYKTYPBI Y(t) ompesessiercss CIIOCOGHOCTBIO CUCTEMBI K CO3JIAHUIO0 CTPYKTYDBI yipasieHus y(t),
3aHATOCTBHIO MJIAHOBO-ITPOIHOCTHYECKO JIesiTeIbHOCTBIO Z(1) U ee B3auMOJefiCTBUEM € IPOIECCOM
nesnenosaranust z(t). Ckopocrb mocrpoenust "nepesa meseii" Z(t) onpejesisiercst CiocOGHOCTHIO
CHCTEMBI K IeJIeTIoJIaralnio 2 (1), B3anMoJeCTBIEM ILIAHOBO-TIPOTHOCTUYECKON AesTebHOCTH X (1) I
JIeSITEIHHOCTH 110 CO3JIAHUI0 HOBOI yIpaBIeHYeCKON CTPYKTYDHI Y(t).

Kosddunuentsr k,a,b,c,d, m,l xapakTepu3yioT BHEIIHee M BHYTpPEHHEE BJINSHUE PA3JTMIHBIX
cpesn Ha cuctemy. OHU M3MEHSIIOTCA MeJJIEHHEe, YeM CO3JIaeTcsl HOBas IejieBasl MporpaMma
GYHKITMOHUPOBAHUSI, IOITOMY CUYATAEM UX ITOCTOSHHBIMUA. Ot KOIPPUITUEHTHI SIBJITIOTCSI
yupasjsornumu (6udypKanuoHHbIME) HapaMeTPaMU U OHPEJIE/ISIOT CaMOPEryJIsinuio cucrembl (1).
Jng MX OLEHKH HPOBOAMJINCH IIE€JATOTMYECKNAE SKCIEPUMEHTHI B COOTBETCTBHM C METOIUKOIA,
OIMCAHHOI B [2].

Cucrema (1) umeer Tpu ocobble TOUKH, oupeiessimble uz yeiaosuit z(t) = 0, y(t) = 0,
2(t) = 0. Ogmma — 0(0,0,0), KoopAMHATHI JBYX JPYIUX BBIPAXKAIOTCA depe3 KoM OUIUEHTHI
k,a,b,c,d,m,l. XapaxTepucTuieckoe ypaBHEHUE, COOTBETCTBYIOIEE JTUHEAPU3OBAHHONW CHUCTEME,
IpH JIIOOBIX 3HAYCHUAX MAapaMETPOB MMEET JBa OTPHIATEILHBIX M OJUH IOJOXKHTEJIbHBIA KOPEHb.
Canenosarensio, touka (0,0,0) — ceaio-yses ¢ JAByMEPHBIM YCTOHYMBBIM U OJHOMEDPHBIM
HEYCTOWYNBBIM MHBAPUAHTHBIMU MHOIOOOPA3HAMIN.

Ucnonb3yst MeTO/Ibl, U3JI0KEHHBIE B [3,4], ¢ TIOMOINIBIO YNCJIECHHBIX 9KCIEPHMEHTOB OIPEJIE/ICHbI
JIBE TOMOKJIMHIYECKUE TPAEKTOPUH CEJJIO-y3€JI, Pa3PYIIEHNE KOTOPBIX IIPU N3MEHEHNN KOHKPETHBIX
3HAYEHWIT yIPABJIAONIMX IIAPAMETPOB IPUBOIUT K Ou(YPKAIUU TOMOKJIMHAYECKOTO KACKaIa
(Xa0TUIECKOTO aTTPAKTOPA,).

[Tpu 3a1aHHBIX HAYAJIBHBIX yCI0BUsAX T (ty) = o, y(to) = Yo, 2(to) = 20 MeTO TOCIEI0BATETHLHBIX
nupubsimekenuii |5 mosposisier nocrpouTh HPUOIMKEHHOE DellleHre B BHje (DYHKIMU, 3aBUCSIIEl
OT Z0,Y0,20 U t ¢ 000 CTENEHBI0 TOYHOCTH. Pe3yJbraThl BLIMHACICHHUI CBA3aHLI C BOIIPOCOM O
CYIIECTBOBAHUM MHOXKECTBA CEJIJIOBBIX IPEJIEIbHBIX IIUKJIOB U CTPYKTYPBI aTTpakTopa JIoperma.

Baaromapaoctu. Pabora nmomgepkana rpantom PODU Ne 16-06-00150.
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Budypkanmonsnas guarpaMmMa OJJHOI BO3MYIIEHHOI 3aa9u
BUXPEBO JUHAMUKN
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L @unancoswnii ynusepcumem npu Ipasumeavcmee Poccutickoti Pedepayuu
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B noknane paccmarpusaeTcst 0600IIeHIe THHAMAKI CUCTEMBL JBYX BHXPEBLIX HUTEil B 603e-3iiH-
IITEHHOBCKOM KOHJICHCATE, 3aKTIOUCHHOM B IIHJIMHAPHIecKOil joByke (cM. [1]). Junamuka cucrems
JIBYX TOYEUHBIX BUXPEH OMHCHIBACTCH CHCTEMOIl OOBIKHOBEHHBIX AnddepeHIuaibHbIX ypaBHeHuil
OTHOCHTEJILHO KOODJMHAT BHXPEBBIX HUTEH, KOTOpas MOXKET ObITH IIPeJCTaBJIeHa B TaMUILTOHOBOI
dopme )

¢ = {¢.m) 1)

co crangapTHOii ckoOkoit Ilyaccona {x;,y;} = _1%-51‘]” rae 6;; — cumBos Kponekepa, u dpynkmneit
Tlamuibrona

H =n[l — (2% +y7)] + *In[l — (23 + 3)] — abn[(w2 — 21)* + (2 — 31)’]

t+aInf(z1 — 22)° + (1 — ) + (@3 + 97 — D)3+ 43— 1)]. @)

3aech 1epes (x, yr) obosHadeHbl KoopauHaTel k-oro Buxps (k = 1,2), dasoseiit BekTOp { MMeer
KOODJAMHATHI {T1,Y1,T2,Y2}, HapaMerp a 0OO3HAYAET OTHOIIEeHWe MHTeHcuBHOCTeH. Pusndeckuii
mapamMeTp b XapaKTepu3yeT Mepy B3amMOJEHCTBHUS BUXpeH W yIep:KHUBAIONMIEro MOTEHIHaIa. B
paborax [1|, [2] Ha ocHOBe 3KCIEpUMEHTAJBHBIX JAHHBIX B CJIy4Yae PABHBIX HHTEHCUBHOCTENl
PUHUMAJINCH CJIeAyIONe 3Hadenns mapamerpa: b = 2; b = 1,35; b = 0, 1. NuTepec npeacrasiisier
U3yUeHNe JTUHAMUKHU JIJI NPOU3GOAbHO020 TTOJIOKUTETHHOTO 3HAYEHUsT TTapaMeTpa b.

®Pa30Boe TPOCTPAHCTBO P 3a7aeTCsI B BHUJE IPIMOrO MPOU3BEJCHUS JIBYX OTKPBITBHIX KPYTOB
eIMHIIHOTO PAJINyCa ¢ BBIKOJIOTOM MHOYKECTBOM CTOJKHOBeHMHil Buxpeit. Cucrema (1) momyckaer
OJTMIH JIOTIOTHUTEJILHEIN TIePBBIi HHTerpaJl JIBUKEHUA — MOMENM 3asurpernocmu F' = a:%—i—y%—l—a(x%—i—
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y3). Oynkmua F Bmecte ¢ ramuabTonuanom H o6pasyior ma P MOHbLIT HHBOJIOTHBHEIH HAGOD
unTerpasos cucremel (1). Omnpenemnm omobpasicenue momenma F : P — R2 nonaras (f,h) =
F() = (F(£),H(C)). Oboznaunm 1gepe3 C COBOKYIHOCTH BCEX KPUTHIECKHX TOUEK OTOODAZKEHMUSI
MoMeHTa.  MHOoXkKecTBO KpuTudeckunx 3HadeHuii ¥ = F(C N P) nHazbiBaercs Oudypkayuornol
duazpammoti. B paborax [3] u [4] ms cayaas, korma b = 1 u e = 0, nccaegoBana dhaszoBast TOMOTOTHA
JIMHAMUKH JIBYX BUXPEBBIX HUTEH U UX JuHaMudecKue 3hheKTsl.

OcHoBHas 11eJIb JJOKJIA/1a — IIPEIbABATD SIBHYIO apaMeTpU3aniio 6udypKannoHHON uarpaMMbl
¥ U151 BO3MYIIIEHHOTO TaMHU/IbTOHNAHA (2), T.e KOI/la apaMeTp B3auMoeiicTBrst b IpuHIMAaeT JII00bIe
0JIOZKUTe/IbHbIe 3HadeHHst. OGHADY?KEHbI HOBbIEe CBOCTBa GHdYPKAIMOHHON AuarpaMMbl, KOTOPbIE
paHee He BCTpEYAJINCh B 3ajiadaX BUXpeBoil quHamuku (4], [5].

Baaromapaoctu. Pabora Boinosmena mpu nojgaepkke rpaaTos PODPU Ne 16-01-00170, 16-01-
00809, 17-01-00846 n 18-01-00335.
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O xaoTmYecKux pelneHusiXx Pa3HOCTHBIX ypaBHEHUA
CO cJiy4YaliHbIMU IIapaMeTpaMu

Poauna JI. .
Baadumupceruti 2ocydapemeennoitl yrusepcumen,

LRodina67@mail.ru

Pasnoctuble ypaBHeHHsI BO3HHKAIOT WPH MAaTEMATUIECKOM MOJIEIMPOBAHUHN  JUCKPETHBIX
JAHAMAYECKAX  CHCTEM. Hamnpumep, pa3BuTnme MHOrUX OHOJIOTUYECKUX —MOMYJIANMAI  C
HeIlePEeKPBIBAIOIINMHUCS ITOKOJICHUAMNI OIIPe/iesideTcs ypaBHEeHAEM

Tnt1 = f(xn), n=0,1,..., (1)

rJe Tp41 — Pa3Mep HOIYJIAINU B MOMEHT BpeMeHU N + 1 BhIparkaeTcs 4epe3 pa3Mep IMOIYJIAINT Ty,
B NpeblayIuii MoMeHT BpeMeHnu. CBOICTBa pellleHmii TaKUX YPaBHEHUN OIUCAHBI, B YaCTHOCTH, B
paborax [1], [2].
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Pacemorpum 06061menne mozesn (1) B IPENOIOKEHUN, 9TO B KayKJblii MOMEHT BDEMEHH N
dyHKIMs f 3aBUCAT TakxKe OT CJAYyJYallHOTO HapaMerpa Wy. 1loJydnM BEpOSITHOCTHYIO MOJIENb,
3a/IaHHYIO PA3HOCTHBIM ypaBHEHUEM

Tn+1 :f(wnaxn)y (men) ceQxI, n=01,..., (2)

riae ) — 3ajJaHHOE MHOXKECTBO C CHIMa-ajrebpoit moaMHoxKecTB 2A, Ha KOTODOIl orpejieieHa
BEpOsITHOCTHAsE Mepa [, I = [a, b].

BeesieM B paccMoTpeHue BEepOsiTHOCTHOE IpocTpancTBo (3,2, 1), Tae X 03HaYaeT MHOXKECTBO
HOCJIeJI0BATENBHOCTEN 0 = (W0, W1, -+« ,Wh, - - . ) € 2%, cucTeMa MHOXKeCTB 2 sIBJIsIeTCsl HAMMeHbITIed
curma-aarebpoil, TopoKIeHHON IuInHApuIeckumu MuOo)KectBamu D,, = {0 € ¥ 1wy € Qo, ..., wy, €
.}, toe Q; € A, j =0,...,n, u oupenermm mepy i(Dy) = (o) - (1) - ... - @(Qy). Torma
Ha u3MepuMoM mpocrpancTBe (3,%2l) cylmecTByeT eIMHCTBEHHAsI BEPOSITHOCTHASI Mepa (i, KOTOpAast
SIBJISIETCS TIPOJOJIZKEHUEM MepHhI [ Ha curMa-aarebpy 2. g kaxaoro n € N obosHaunm

on = (Wo, w1, ..., wn—1), ["(on,x)= f(wn_l, .. ,f(wl,f(WO,x))).

Bynem Takzke nosbzoBarbest obosnadenusimu f (o, x) = [ (op, x) u xy (0, x) = (0, x).

Touku Sy, . .., Bk—1 obpasytor yuka B nepuoda k > 1 nius ypashenus (2), ecau Jyisi Becex o € X
BuiosiHensl pasencrsa f¥(a, Bo) = Bo, f™(0,B0) = Bm, m = 1,...,k — 1 u nukn B He cojepxuT
IIIKJIA MEHDIIErO MEePUOJIA.

Onpenenenne 1. I[uka B nazosem ommaskusaiowum ¢ 6ePOAMHOCTIVIO  eOUHUYA, —eCAl
cywecmeyrom muosicecmeo Lo C X u oxpecmmuocmo U dannozo yuraa, maxue, wmo j1(Xg) = 1 u dan
Kkasicdoti mowwu (o,z) € ¥ x (U \ B) natidemesa nomep N = N (o, ), daa vomopozo fN(o,x) ¢ U.

Onpepenienne 2. Pewenue (0, z0) ypasuenus (2) (npu dukcuposanrom snavenuu o € X)
HA308EM  TAOMUYMECKUM, ecau 0an kaoicdozo k € N npeden lim x,,(0,x0) ne cywecmeyem.
n—o0

Touky xo € I nazosem anepuoduyeckoli ¢ 6ePOAMHOCMbIO eduHULA MOouKol ypasuenus (2), ecau
cywecmsyem mroocecmso Lo C X maxoe, wmo ((Xg) = 1 u das w6020 o € Ly pewerus Ty (o, xq)
Taomureckue.

Touky y Hasosem co pemenem nepuoduseckol uiu npednepuoduseckol mowkol ypasuerus (2),
ecau cywecmeyem m € N makxoe, wmo das a0box op € Q™ mouka x = [ (0, y) AcasemcA
moukotl nexkomopozo nepuoda k > 1.

Teopewma. IIpednonostcum, wmo ypasrenue (2) aubo ne umeem mu 00nozo yuksa (nepuoda k >
1), aubo ece wyukrav, ommankusaouue ¢ eepoamuocmvlo edunuya. Ilyemo Y — mmoorcecmeo
NEPUOCUMECKUT U CO BPEMEHEM NEPUOIUMECKUT MOouekK danno20 ypashenusa. Tozda mobas movka
zo € I\'Y anepuoduneckasn ¢ sepoamnocmovio eQuHuya.
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Ha wacrogmuit momeHT 3jekTpokapauorpadudeckoe obciieioBaHue sIBJsieTCss  HamnboJee
PACIIPOCTPAHEHHBIM METO/IOM OIEHKHU KapJuojuHaMuKu. HecMoTpsi Ha JIOCTUXKEHUS B aHAJII3€e
OMOMEIUIIUHCKUX CUTHAJIOB, B 3JIEKTPOKAPINOrpahuIecKoil JUarHOCTHKE OCTAETCS Psij HEPEIEHHBIX
mpobsiem. OHa U3 HUX COCTOUT B TOM, 9TO BI3yaabHast orenka JDKI' mo3BossteT ycTaHOBUTE HATMYITE
JINIIb OTMEJIBHBIX KIMHUYIECKH WHTEPIPETUPYEMBIX 0COOEHHOCTEH paboThl cepina. Ocrtaéres Kpyr
CUTyallnii, B KOTOPBIX HMeEIOIuecss MeTonbl aHam3a JKI' He 1af0T pe3ybraToB, IOJIAIOIIXCS
KOPPEKTHOI nHTepnpeTannn. K TakuM CUTyalusiM, B YaCTHOCTH, OTHOCSITCS CJIy9anl TaK HA3bIBAEMO
«IIEPEXOIHON KapINOSUHAMUKI», KOTJIa JUarHOCTUYECKN 3HAYNMble u3MeHeHus Ha DK BuIparkeHbl
HEYETKO.

Hamu 6b11 paspaboTaH TOIMOJJOIMYECKHH MMOAX0[ K aHajau3dy eeiiBier-cuekTpoB DKI' curnaga,
Ho3BoJIsTIONTHI Kiraccudurmposarsb Muoroobpasue dopm IKI' ¢ Tomonmornyeckux mosunuii [marent
RU2632756C2|. PaspaboraHHblil TOIOJOINYIECKUii M0/IX0/] HO3BOJISET JETEKTUPOBATH [1E€PEXO/HbIE
COCTOSIHUST Kap/IMOJIMHAMUKHU, UMEIOINE MECTO B MOMEHT CMEHBI TOIIOJIOTMYECKOro THIIa BeHBJIeT-
cuektpa IDKI. B kadecTtBe mpumepa B JIOKJIajie OyJeT pPACCMOTPEH BapUAHT TOIOJOTMYECKON
KJIacCUUKAINN, ToapasyMesalorieit moapasaenerne YKI' curaanos Ha 20 TOMOTOTHIECKAX THIIOB.
Ucrnionp3oBanme JAHHOTO MOXOJa JIEMOHCTPUPYETCs Ha Psijie TPUMEPOB, OTBEUYAONINX Pa3IUIHON
Kap/imojinnamuke. B gacTHOCTH, OyJlyT PACCMOTPEHBI CIEHAPUNA HAYAJILHOIO Pa3BUTHA UHGAPKTA
MUOKap/a U CIEHAPUM BO3HUKHOBEHUS MepraresbHON apurmun. C MOMOIIBIO pa3paboTaHHOIO
IO/IXO/[a HalJIeHbl NHINKATHBHBIE TIOKA3ATEH, IMEIOIIIE OlIPeIeIEHHOE TNarHOCTUIeCKOe 3HAUEHE.
Paspaboran u 3amyleH B 3KCIUIyaTAIIMIO WHTEPHET-CEPBUC, IMO3BOJIAIONINN B OHJIAWH PEXUME
anasmsuposarb DKI'-curnassr (in-silico.ru/services/).

Ncnonp3oBanne TOMOJOTHIECKAX METOJMIOB MO3BOJISIET PACHIUPUTH BO3MOYXKHOCTH 10 BBISIBJIEHUIO
U TPEeNyNpekJIeHNI0 KPUTHIECKUX COCTOAHUN B KapAMOJAWMHAMHUKE. Pa3BUTBIMH ITOIXOI MOXKET
[PEJICTABJIATh UHTEPEC HE TOJBKO B CBs3u ¢ aHajiun3oM DKI' curnasios, HO u mpu aHajm3e JIIOOBIX
CUTHAJIOB, HUMEIOIUX [IePUOIUIECKYI0 CTPYKTYPY.

Kinaccudukanusa pacuimpeHnii KBa3sulliepuoJniIecKnX MOTOKOB HA TOpe
CaxapoB A. H.

Huoicezopodckasn 2ocydapcmeennasn ceavckorosaticmeennas axademus, Huorenut Hoszopod
ansakharov2008Qyandez.ru

Jlok1a)1 TOCBAIIEH BOIPOCAM TOIIOJIOTMYECKON KiaccuUKAIMI TOTOKOB Ha TPEXMEPHOM TOPE,
MMOPOKJIAEMbIX BEKTOPHBIMU ITOJISIMU BUJIA

Y =w, 9 :'U((Pve)> (1)
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riie (p,0) — yriosbie Koopaunare! na Tope T3, Bekrop w € R? nmMeer paruonaabHo He3aBUCHMbIE
KOMIIOHEHTHI, v(p, §) — HelpepbIBHAs, [IEPHOIMYECKasl [I0 BCEM [IePEMEHHbBIM (DYHKIHSL.

Bynem pacemarpuBarh 3aJa4y KaacCubUKAIME JJIs [IOTOKOB € OJHUM W TEM K€ BEKTOPOM W.
Kanacc Trakux norokos obozHaunm depes C,,. Kiaccudukaiius IoTOKOB 13 3TOI0 KJIACCa IIPOU3BOLUTCS
10 OTHOMICHUIO NOCAOTIHOL MONOA0UMECKOT CONPANCEHHOCTIAU, T.e. TOTOKH f' u g' comnpszKeHbl,
eciu cymectByer romeomopdusm topa h @ T3 — T3 rakoit, uto h(p,0) = (p, Hy(0)), rie
H, : S' — S' - romeomopdusm S, u h(fi(¢,0)) = g¢' (¢, Hy(#)). Eciu xe orobpazkenne
H, ne romeomopdusm, a TOIBKO ToMOMOpP®U3M (HelpepbiBHOE 0TOOparkKeHHe Ha), TO TOBOPAT O
nocaotinoti noayconpasicennocmu orokos ftu gt Tlyers ®(t, @) = p+wt, O(t, ¢, 0) = 0+ Ft(p, ),
~ HOJHSATHE Ha YHHBepcajbHOe HakpbiTHe Topa T3 moroka f!. M3BectHO, 4TO JIFOGOH MOTOK W3
kacca C, UMeeT eJMHCTBeHHBIH 6exmop epawenus p = (w1,ws2,0), 0 = limy_oo F'(p,0)/t, Tre
o0 (vucao epawenus caos) He 3aBUCAT OT HAYAJBHBIX JaHHBIX (@,0) (cm. [1],[2]). pyroit Baxkuoit
XapaKTEPUCTUKON, UCIIOIB3YEMON TIPU KJIACCUMPUKAIN, ABJIAECTCS CBONCTBO Pe2yAApHOCMU;: TIOTOK
[t € &, perynsipen, eciu cymecTsyeT uucio ¢ > 0 takoe, uro |F(p,0) —to| < c. Bekrop Bpamienus
p Ha3BIBAETCS HEPEe3OHAHCHBIM, €CJU €ro KOMIIOHEHTHI PAIMOHAJLHO HE3aBUCHMBI. B IPOTHBHOM
cJlydae OH Ha3bIBAETCS PESOHAHCHBIM.

B noxkmajie popMymupyercst psiji yTOUYHEHUH, KacalMuXcsl KjiacCupuKaIuu moTokos u3 C,,. Bymem
rOBOPHTH, 4TO HOTOK f! € Gy, nocaotine ducmanen, ecan s seex ¢ € T2 u ;) # 0y cymecrsyer
0(01,02) > 0 Takoe, uro lim;_, 4 |O(t, p, 01) —O(t, v, 02)| > 0(01,02). Ecin ke B cjiosix CyImecTByOT
ACUMIITOTHYIECKIE TPAEKTOPUHU, TO MMOTOK HA3BIBAETCS NOCAOTHO NPOKCUMANDHBIM.

Teopema. ITycmv nomox ft € Cy, peeyaapen u ezo eexmop epawerus nepesornancuoit. Tozda

1. ecau nomox ft nocaotino ducmanen, mo on monosoeunecku conpastcen aunetinomy (@, 0)
(¢ +w,0+ 0);

2. ecau nomok f! nocaotino npoxcumansen, mo oM MONOAOLUMECKU NOAYCONPANCEH AUHETHOMY
noOMoKY.

JokazaTebeTBO 9TOrO pedysbraTa onupaeTcs Ha 0606mmeHnyo Teopemy [ormaska-XeqiyHma [5]
O CymieCTBOBaHUU HEIIPEPBIBHBIX peHleHI/II;‘I AJIUTUBHDBIX I'OMOJIOTUYECKUX ypaBHeHHﬁ.
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06 ogHOM KJlacce OBUXKEHUIT OCECUMMETPUYHOIO CITy THHUKA
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Coob1menre IMOCBAIIEHO CBONCTBAM JIBUYKEHHSA OCECHMMETPUYHOIO CIIYTHUKA OTHOCHUTEHHO
[EHTPA MAaCC IOJ JIeWCTBUEM TI'PaBUTAIMOHHOrO MoMmeHTa. [leHTp Macc CIyTHUKaA IBUXKETCH II0
KpPYToBOil opbuTe B EHTPAIbHOM I'DABUTAIIMOHHOM ITOJIE.

[Iycts L - BEeKTOp KMHETUYECKOTO MOMEHTA CIIyTHUKA OTHOCUTEJIHLHO €ro IeHTpa Macc. Ecim
npoekinss L Ha 0OCb CHMMETpPUM CIIyTHUKa paBHA HYJIO, BO3MOXKHBI <«IIJIOCKME» JIBUKEHUS -
JBUKEHUSI, B KOTOPBIX OCb CUMMETPHUHU JIEXKUT B IJIOCKOCTH OPOUTHI, a BEKTOP YIJIOBOH CKOPOCTH
W TIEPIEHIUKYJISTPEH dTOH ILIOCKOCTH.

B dazoBomM mpocTpaHcTBE raMUJIBTOHOBOM CUCTEMBI C ABYMSI CTEIIEHSIMEI CBOOO/IBI, OIIMCHIBAOIIIEH
JNBUKEHNE OCECHMMETPUIHOIO CIIyTHUKA OTHOCHTE/HHO IEHTPA MAacCC, IJIOCKAM JIBUKEHUSIM
oTBedaloT (Has30oBble TPAEKTOPHUHU, JEXKalllie Ha JIBYMEPHOM WHBAPHAHTHOM MHOIOOOPA3HH.
IloBenmerne haz30BBIX TpaeKTphUil Ha 3TOM MHOTOOOPA3WN AHAJOTUIHO IOBENEHUIO TPAEKTOPUil
Ha (a30BOM IOPTPETE MATEMATHIECKOI'O MAATHHUKA - CelapaTpPUChl pas3essiioT TPaeKTOPHH,
COOTBETCTBYIOIINE BPAIIEHUSIM U KOJIEOAHUSAM CIIyTHUKA OTHOCUTE/IHLHO MECTHON BEPTUKAJIH.

[110CcK¥Ee NBUKEHUST OCECHMMETPUIHOTO CITY THUKA M3y Jasnch B [1]. B Hamem anasmse HeKOTOpBIE
HOBBIE CBOMCTBa IIOCKUX JIBUXKEHUNW W JBUXKEHHUi, K HHUM OJU3KNX, OBbLIM YCTAHOBJEHBI Ha
OCHOBe OOIIEro MOIX0Ja K MCCJIEOBAHNIO TAMUJIBTOHOBBIX CHCTEM C CelapaTPUCHBIMUA KOHTYPaMH,
pasBuBaeMoro B [2,3|.

BaaromapraocTtu. Pa6ora Beinosnena npu guaancoBoit nojjep:kke POOU (rpanr 17-01-

00902).
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