We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Stochastic Methods of Decision Making

2021/2022
Academic Year
RUS
Instruction in Russian
4
ECTS credits
Delivered at:
Department of Applied Mathematics and Informatics (Faculty of Informatics, Mathematics, and Computer Science (HSE Nizhny Novgorod))
Course type:
Elective course
When:
3 year, 3 module

Instructor


Kocheganov, Victor

Программа дисциплины

Аннотация

Дисциплина "стохастические модели принятия решений" для образовательной программы подготовки бакалавров "прикладная математика и информатика" является одной из дисциплин блока вероятностных и статистических методов моделирования. Используется в других дисциплинах этого блока и в дисциплинах блока Data Culture.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины является развитие способностей к профессиональному применению вероятностных и статистических методов анализа данных в экономической сфере, страховании и бизнесе, а так же развитие компетенций в области математи-ческих методов и информационных технологий. В процессе освоения дисциплины сту-дент приобретает способности описывать проблемы и ситуации профессиональной дея-тельности, используя язык и аппарат математических и компьютерных наук. В результате освоения дисциплины студент должен: Знать Основные понятия и определения курса Уметь иллюстрировать свои теоретические знания конкретными примерами Ориентироваться в различных статистических моделях принятия решений Владеть Иметь навыки (приобрести опыт) применения теоретических положений для реше-ния практических задач. Данная дисциплина относится к вариативной части цикла дисциплин профиля подготов-ки, обеспечивающих подготовку бакалавра. Изучение данной дисциплины базируется на блоке дисциплин по математике. Основные положения данного курса используются при изучении дисциплин анализа данных, подготовке КР и ВКР.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать вывод функции распределения времени безотказной работы сложной системы без учёта эффекта усталости.
  • Знать концепцию сетевой модели фондового рынка
  • Знать нетрадиционные критерии согласия Е.С.Пирсона.
  • Знать типовые случайные величины, случайные векторы, случайные процессы
  • Изучить метод Лемана различения многих гипотез
  • Изучить основные положения теории Вальда статистических решений.
  • Иметь общее представление о критериях согласия.
  • Понимать концепции Несмещённости и инвариантности статистических правил.
  • Понимать разницу между оцениванием, проверкой и различением гипотез
  • Уметь находить маргинальное и условное распределения.
  • Уметь находить распределение функции случайных величин. Моменты, математическое ожидание, дисперсия, коэффициенты вариации, асимметрии, эксцесса. Условное математическое ожидание, ковариация, коэффициент корреляции. Корреляционное отношение Пирсона и корреляционная связь.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • 1. Характеристики случайных величин.
  • 2. Классические подходы к построению вероятностных моделей.
  • 1. Задачи математической статистики.
  • 2. Критерии согласия и моделирование случайных величин.
  • 3. Проверка гипотез. Современные направления.
  • 4. Теория риска и статистических решений.
  • 5. Теория Лемана различения N гипотез.
  • 6. Статистический анализ сетевой модели фондового рынка.
Элементы контроля

Элементы контроля

  • неблокирующий контрольная
  • неблокирующий экзамен
    Экзамен проводится с использованием асинхронного прокторинга. Экзамен проводится на платформе Zoom (https://zoom.us), прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
  • неблокирующий контрольная
  • неблокирующий экзамен
    Экзамен проводится с использованием асинхронного прокторинга. Экзамен проводится на платформе Zoom (https://zoom.us), прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 3 модуль
    0.6 * экзамен + 0.4 * контрольная
Список литературы

Список литературы

Рекомендуемая основная литература

  • Бондаренко П.С., Горелова Г.В., Кацко И.А. под ред. и др. - Теория вероятностей и математическая статистика - КноРус - 2017 - ISBN: 978-5-406-05578-6 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/920636
  • Исследование операций (линейное программирование и стохастические модели) : учебник / В.А. Каштанов, О.Б. Зайцева. — Москва : КУРС, 2017. - 256 с. - ISBN 978-5-906818-78-2. - Режим доступа: http://znanium.com/catalog/product/1017099
  • Пугачев В.С. - Теория вероятностей и математическая статистика - КноРус - 2017 - ISBN: 978-5-4365-1551-9 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/922288

Рекомендуемая дополнительная литература

  • Теория вероятностей и математическая статистика: Учебное пособие / Бирюкова Л.Г., Бобрик Г.И., Матвеев В.И., - 2-е изд. - М.:НИЦ ИНФРА-М, 2017. - 289 с.: 60x90 1/16. - (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-16-011793-5 - Режим доступа: http://znanium.com/catalog/product/370899

Авторы

  • Кочеганов Виктор Михайлович