We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Analysis

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Delivered at:
Department of Applied Mathematics and Informatics (Faculty of Informatics, Mathematics, and Computer Science (HSE Nizhny Novgorod))
Course type:
Compulsory course
When:
3 year, 1-3 module

Instructor

Программа дисциплины

Аннотация

Изучение дисциплины «Анализ данных» базируется на следующих дисциплинах: - Математический анализ; - Геометрия и алгебра; - Дискретная математика; - Теория вероятности и математическая статистика. В результате освоения дисциплины студент должен: знать: - основные понятия анализа данных; уметь: - анализировать данные, выбирать адекватные методы анализа; владеть: - навыками применения основных алгоритмов анализа данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Анализ данных» является знакомство с основными понятиями анализа данных, развитие навыков анализа данных, овладение основными ал-горитмами анализа данных.
Планируемые результаты обучения

Планируемые результаты обучения

  • Владеть базовыми знаниями для освоения курса
  • Уметь выбирать и использовать метод классификации для конкретных наборов данных. Выполнять сравнение методов классификации
  • Уметь вычислять SVD разложение и переходить в пространство меньшей размерности с оценкой ошибки
  • Уметь находить кластерные структуры в данных с помощью различных методов
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение
  • Методы снижения размерности. Сингулярное разложение и метод главных компонент
  • Обучение без учителя (методы кластеризации)
  • Обучение с учителем
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    1 * Экзамен
  • 2024/2025 3rd module
    0.5 * Контрольная работа + 0.5 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ford, W. (2015). Numerical Linear Algebra with Applications : Using MATLAB (Vol. First edition). London: Academic Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=485990

Рекомендуемая дополнительная литература

  • Райгородский, А. М. Вероятность и алгебра в комбинаторике : учебное пособие / А. М. Райгородский. — Москва : МЦНМО, 2008. — 48 с. — ISBN 978-5-94057-384-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9400 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Авторы

  • Семёнов Дмитрий Павлович