We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Algebra and Geometry

2020/2021
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Course type:
Compulsory course
When:
1 year, 1, 2 module

Instructors


Kirikov, Sergey


Misonova, Vera

Программа дисциплины

Аннотация

Дисциплина “Алгебра и геометрия” дает возможность овладеть основами линейной алгебры и приобрести навыки использования ее универсального понятийного аппарата и широкого арсенала технических приемов при построении математических моделей различых экономических закономерностей и процессов, при описании динамики социально–экономических систем прогнозирования развития экономики. Освоение данной дисциплины обеспечит выпускнику получение высшего профессионально профилированного (на уровне бакалавра) образования и обладание необходимыми общими и предметно-специализированными компетенциями, что, несомненно, будет способствовать его социальной мобильности, устойчивости на рынке труда и успешной работе в избранной сфере деятельности.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины “Алгебра и геометрия” являются овладение основами линейной алгебры, приобретение навыков использования ее универсального понятийного аппарата и широкого арсенала технических приемов при построении математических моделей различых экономических закономерностей и процессов, описании динамики социально–экономических систем прогнозировании развития экономики. Достижение этих целей обеспечивает выпускнику получение высшего профессионально профилированного (на уровне бакалавра) образования и обладание общими и предметно-специализированными компетенциями. Они способствуют его социальной мобильности, устойчивости на рынке труда и успешной работе в избранной сфере деятельности.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет работать с векторами в трехмерном пространстве
  • Умеет выполнять простейшие операции с матрицами
  • Владеет различными методами решения систем линейных уравнений
  • Умеет анализировать уравнения линий и поверхностей первого и второго порядка в трехмерном пространстве
  • Знает свойства и определения линейных операторов и линейных пространств, умеет решать задачи.
  • Знает свойства и определения, умеет решать задачи
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Векторная алгебра
    Понятие вектора. Равные вектора. Линейные операции над векторами. Линейная зависимость векто-ров. Базис на плоскости и в пространстве. Декартова прямоугольная система координат. Направляю-щие косинусы вектора. Скалярное произведение двух векторов. Векторное произведение векторов. Смешанное произведение векторов.
  • Матрицы и определители.
    Определение числовых матриц и различные формы их истолкования. Столбцы, строки, главная и побочная диагонали (для квадратных матриц). Сложение матриц и умножение на число, свойства линейных операций. Транспонирование матрицы. Свойства операции транспонирования. Ин-дексные обозначения элементов матриц и операций над ними. Матрицы-столбцы и матрицы-строки. Умножение матриц, правило “строка на столбец”. Символ суммирования ∑ и его свойства. Свойства умножения матриц, взаимные свойства умножения и сложения. Обратная матрица. Элементарные преобразования строк (столбцов) в терминах умножения матриц. Вычис-ление обратной матрицы методом элементарных преобразований строк присоединенной матри-цы. След квадратной матрицы. Ранг матрицы и элементарные преобразования. Миноры произ-вольного порядка. Базисный минор. Теорема о базисном миноре. Определение детерминанта (определителя) квадратной матрицы. Миноры его элементов и их ал-гебраические дополнения. Разложение определителя по произвольной строке (столбцу). Свойства определителей. Вычисление определителей путем накопления нулей в строке (столбце). Детер минант как индикатор линейной зависимости системы своих столбцов (строк). Функциональная точка зрения на определитель.
  • Системы линейных уравнений.
    Развернутая и матричная формы записи системы линейных уравнений. Равносильные преобразо-вания системы и соответствующие им элементарные преобразования строк расширенной матрицы. Условие совместности линейной системы (теорема Кронеккера-Капелли). Нахождение решений методом Гаусса-Жордана. Приведенная система. Множество решений однородной системы. Фун-даментальная матрица и фундаментальная система решений приведенной системы. Структура об-щего решения произвольной системы линейных уравнений, матричная форма его записи. Метод Крамера решения невырожденных квадратных линейных систем.
  • Элементы аналитической геометрии.
    Общие уравнения плоскости в пространстве и прямой на плоскости. Параметрические и канониче-ские уравнения прямой. Уравнение прямой с угловым коэффициентом на плоскости. Общие урав-нения прямой в пространстве. Угол между плоскостями и между прямыми. Расстояние от точки до прямой и от точки до плоскости. Канонические уравнения кривых второго порядка (эллипс, ги-пербола, парабола).
  • Линейные пространства и линейные операторы.
    Определение линейного (векторного) пространства. Простейшие следствия и аксиом линейного пространства. Линейная зависимость векторов пространства. Базис и замена базиса. Линейные подпространства – определение и примеры. Сумма и пересечение подпространств. Прямая сум-ма подпространств. Вычисление подпространств. Определение линейного оператора. Матрица линейного оператора в фиксированном базисе Определение линейного отображения линейных пространств. Преобразование линейного пространства. Координатная запись линейных преоб-разований. Изменение матрицы линейного преобразования при замене базиса. Сумма и произ-ведение линейных отображений. Изоморфизм линейных пространств. Инвариантные подпро-странства. Задача о собственных векторах линейного преобразования. Собственные числа, спектр линейного оператора. Характеристическое уравнение и его инвариантность относитель-но замены базиса. Свойства собственных векторов и собственных значений. Диагональный вид матрицы преобразования. Линейные операторы простой структуры. Критерий диагонализируе-мости матрицы линейного оператора.
  • Квадратичные формы.
    Линейные числовые функции (функционалы, формы) на линейных пространствах. Билинейные квадратичные формы. Ранг и индекс квадратичной формы. Квадратичные формы и скалярное произведение. Положительно определенные квадратичные формы. Критерий Сильвестра (формулировка).
Элементы контроля

Элементы контроля

  • неблокирующий контрольная работа
  • неблокирующий контрольная работа
  • неблокирующий экзамен
    "Экзамен проводится в письменной форме с использованием асинхронного прокторинга. Экзамен проводится на платформе LMS (https://lms.hse.ru), прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи."
  • неблокирующий аудиторная активность
    Устный опрос, работа у доски, разбор домашних заданий
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.1 * аудиторная активность + 0.2 * контрольная работа + 0.2 * контрольная работа + 0.5 * экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Бугров Я. С., Никольский С. М. - ВЫСШАЯ МАТЕМАТИКА В 3 Т. Т.2. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ 7-е изд. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2019 - 281с. - ISBN: 978-5-534-03009-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/vysshaya-matematika-v-3-t-t-2-elementy-lineynoy-algebry-i-analiticheskoy-geometrii-431960
  • Кремер Н. Ш., Фридман М. Н., Тришин И. М. ; Под ред. Кремера Н.Ш. - ЛИНЕЙНАЯ АЛГЕБРА 3-е изд., испр. и доп. Учебник и практикум для СПО - М.:Издательство Юрайт - 2019 - 422с. - ISBN: 978-5-534-10169-0 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-442442
  • Под ред. Кремера Н.Ш. - ЛИНЕЙНАЯ АЛГЕБРА 3-е изд., испр. и доп. Учебник и практикум для бакалавриата и специалитета - М.:Издательство Юрайт - 2019 - 422с. - ISBN: 978-5-534-08547-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-432050

Рекомендуемая дополнительная литература

  • Линейная алгебра, расчётные задания, 49 с., Бляхман, Л. Г., 2003
  • Основы линейной алгебры и аналитической геометрии: Учебно-методическое пособие / В.Г. Шершнев. - М.: НИЦ ИНФРА-М, 2013. - 168 с.: 60x88 1/16. - (Высшее образование: Бакалавриат). (обложка) ISBN 978-5-16-005479-7 - Режим доступа: http://znanium.com/catalog/product/318084
  • Основы линейной алгебры и аналитической геометрии: Учебное пособие / Шершнев В.Г. - М.:НИЦ ИНФРА-М, 2014. - 168 с.: 60x88 1/16. - (Высшее образование: Бакалавриат) (Обложка) ISBN 978-5-16-005479-7 - Режим доступа: http://znanium.com/catalog/product/455245
  • Перельман Я. И. - ЗАНИМАТЕЛЬНАЯ АЛГЕБРА - М.:Издательство Юрайт - 2019 - 193с. - ISBN: 978-5-534-00072-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/zanimatelnaya-algebra-438188