We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Game Theory

2020/2021
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Delivered at:
Department of Mathematical Economics (Faculty of Economics)
Course type:
Elective course
When:
2 year, 1, 2 module

Instructor


Silaeva, Vera A.

Программа дисциплины

Аннотация

«Теория игр» как учебная дисциплина обеспечивает приобретение студентами знаний по основным разделам некооперативной теории игр: статические игры с полной информацией, динамические игры в условиях совершенной информации, динамические игры в условиях несовершенной информации, повторяющиеся статические игры, статические игры с неполной информацией, динамические игры с неполной информацией. В результате изучения дисциплины студент получит представление и будет знать основные понятия и категории, используемые в теории игр, уметь их применять для решения конкретных задач, иметь представление о методах и моделях теории игр, используемых в экономике и финансах, и обладать навыками применения полученных знаний.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения студентами данной дисциплины являются: 1. расширение и углубление знаний студентов в области некооперативной теории игр. 2. овладение основными понятиями некооперативной теории игр, уметь их применять для решения конкретных задач, иметь представление о методах и моделях теории игр, используемых в экономике и финансах, и обладать навыками применения полученных знаний. 3. изучение студентами разделов курса: статические игры с полной информацией, динамические игры в условиях совершенной информации, динамические игры в условиях несовершенной информации, повторяющиеся статические игры, статические игры с неполной информацией, динамические игры с неполной информацией. 4. изучение моделей принятия стратегических решений индивидам, фирмами и прочими экономическими агентами и форм их взаимодействия. Развитие у студентов навыков качественного и количественного анализа экономических моделей, явлений и процессов; Развитие навыка построение моделей, используя усвоенные теоретико-игровые понятия интерпретировать полученные результаты. 5. формирование у студентов навыков самостоятельной работы с литературой, электронными ресурсами и интернет-источниками.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знает цели и задачи курса, смысл изучения предмета, ориентируется в терминологии и понятиях теории игр. Умеет классифицировать задачи теории игр.
  • Способен различать типы статических игр, знает основные понятия этого раздела. Ознакомлен с классическими задачами. Способен применять навыки для решения конкретных задач.
  • Умеет представлять игру в развернутой и нормальной форме, находить равновесия по Нэшу и равновесие по методу обратной индукции
  • Умеет находить совершенные в подыдграх равновесия по Нэшу
  • Способен формулировать и решать повторяющиеся статические задачи
  • Знает особенности статических игр с неполной информацией. Умеет находить равновесие по Байесу-Нэшу
  • Знает особенности динамических игр с неполной информацией. Умеет находить совершенное равновесие по Байесу-Нэшу
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Введение. Тема 1. Предмет теории игр.
    Основные идеи и примеры теории игр. Классификация игр. Игры в нормальной форме. Нормальная форма игры. Стратегии и исходы, выигрыши, рациональность, и предположение об информированности участников, концепция общего знания. Примеры игр с одновременными ходами. Игры в развернутой форме. Стратегии. Информационные множества. Основные идеи и примеры.
  • Раздел 2. Статические игры с полной информацией. Тема 2. Статические игры в условиях неопределенности о состояниях природы.
    Статические игры в условиях неопределенности о состояниях природы. Максиминный критерий Вальда оптимальности стратегий, критерии Сэвиджа и Гурвица. Выбор при известных вероятностях состояний природы. Парето оптимальные стратегии
  • Раздел 2. Тема 3. Антагонистические игры.
    Антагонистические игры: цена игры, решение игры, седловые точки. Оптимальные решения антагонистических игр в смешанных стратегиях. Графический метод решения. Концепция доминирование. Решение методом исключения доминируемых стратегий. Седловые точки. Существование цены игры.
  • Раздел 2. Тема 4. Парето-оптимальность. Концепция доминирования. Равновесие по Нэшу.
    Биматричные игры. Доминирование по Парето. Парето-оптимальные исходы. Доминирующие, доминируемые и недоминируемые стратегии. Равновесие в доминирующих стратегиях. Последовательное удаление доминируемых стратегий. Равновесие по Нэшу. Наилучшие ответы. Связь концепций равновесия по Нэшу, равновесия в доминирующих стратегиях и исходов, полученных в результате последовательного элиминирования доминируемых стратегий. Равновесие по Нэшу в смешанных стратегиях. Игры «Дилемма заключенных», «Семейный спор» и др. Модели олигополии Курно и Бертрана. Аукцион Викри.
  • Раздел 3. Динамические игры в условиях совершенной информации. Тема 5. Решение динамических игр в условиях совершенной информации. Алгоритм обратной индукции. Равновесия по Нэшу.
    Представление игр в развернутой и нормальной форме. Равновесие по Нэшу, неправдоподобные угрозы и обещания. Алгоритм обратной индукции и свойства исходов, полученных в результате его применения. Свойства равновесий по Нэшу, полученных в результате применения алгоритма обратной индукции. Модели дуополии Штакельберга, ценового лидера.
  • Раздел 3. Тема 6. Игры с последовательными ходами
    Примеры игр с последовательными ходами. Купля – продажа рабочей силы, Последовательная торговая сделка. Модель Рубинштейна. Каскад фирм или двойная маржинализация, вертикальный контроль. Монетарная политика. Борьба за ренту.
  • Раздел 4. Тема 7. Динамические игры с несовршенной информацией. Концепция совершенных в подыграх равновесий по Нэшу. Игры с совершенной памятью. Поведенческие и смешанные стратегии
    Понятие подыгры. Концепция совершенных в подыграх равновесий по Нэшу. Угрозы и их правдоподобие. Стратегические ходы. Связь концепции совершенных в подыграх равновесий по Нэшу и метода обратной индукции. Совершенная память. Поведенческие и смешанные стратегии.
  • Раздел 4. Тема 8. Критика концепции совершенного в подыграх равновесия и алгоритма обратной индукции
    Критика концепции совершенного в подыграх равновесия и алгоритма обратной индукции. Примеры и приложения.
  • Раздел 5. Повторяющиеся игры. Тема 9. Двукратная повторяющаяся игра. Концепция равновесия в повторяющихся играх
    Двукратная повторяющаяся игра. Совершенные равновесия для нормальной формы. Множество стратегий в повторяющихся играх. Примеры: банк-инвестор, тарифы и несовершенная международная конкуренция. Принцип однократного отклонения.
  • Раздел 5. Тема 10. Бесконечно повторяемые игры. Народная теорема.
    Неограниченно повторяемые игры. Цена игры в неограниченно повторяемых играх (фактор дисконтирования). Достижимый платеж и средний платеж. Свойство трансверсальности. Народная теорема. Стратегии переключения, «зуб за зуб», ограниченного возмездия. Модель Курно дуополии (бесконечное число раз повторяемая игра).
  • Раздел 6. Статические игры с неполной информацией. Тема 11. Статические игры с неполной информацией. Равновесие Нэша-Байеса. Примеры и приложения.
    Примеры игр с неполной информацией. Нормальная форма представления игры. Концепция равновесия Байеса-Нэша. Примеры и приложения. Модель Курно при асимметричной информации. Игра «Семейный спор» при неполной информации.
  • Раздел 7. Динамические байесовские игры. Тема 12. Динамические игры с неполной информацией. Слабое совершенное Байесовское равновесие. Секвенциальное равновесие.
    Концепция вероятностных ожиданий. Слабое совершенное Байесовское равновесие. Секвенциальное равновесие. Примеры нахождения равновесий в играх типа «вхождение на рынок».
Элементы контроля

Элементы контроля

  • неблокирующий Активность на семинаре
  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
    Правила экзамена при онлайн режиме. Экзамен проводится в письменной форме. Экзамен проводится на платформе MS Teams (https://teams.microsoft.com). К экзамену необходимо подключиться за 15 минут до начала экзамена. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка MS Teams. Для участия в экзамене студент обязан: поставить на аватар свою фотографию, явиться на экзамен согласно точному расписанию. Во время экзамена студентам запрещено: выключать камеру, пользоваться конспектами и подсказками. Кратковременным нарушением связи во время экзамена считается нарушение связи менее 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.35 * Активность на семинаре + 0.25 * Контрольная работа + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Кремлёв А. Г. ; под науч. ред. Тарасьева А.М. - ТЕОРИЯ ИГР: ОСНОВНЫЕ ПОНЯТИЯ. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 141с. - ISBN: 978-5-534-03414-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-igr-osnovnye-ponyatiya-438607

Рекомендуемая дополнительная литература

  • Диксит А., Нейлбафф Б. - Теория игр. Искусство стратегического мышления в бизнесе и жизни - Издательство "Манн, Иванов и Фербер" - 2015 - 464с. - ISBN: 978-5-00057-311-2 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/62092