We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Introduction to neural network and machine translation

2022/2023
Academic Year
ENG
Instruction in English
8
ECTS credits
Delivered at:
Department of Applied Mathematics and Informatics (Faculty of Informatics, Mathematics, and Computer Science (HSE Nizhny Novgorod))
Course type:
Elective course
When:
4 year, 2, 3 module

Instructors


Malafeev, Alexey


Орлов Михаил Максимович

Course Syllabus

Abstract

The course introduces basic concepts of neural networks, deep learning and machine translation.
Learning Objectives

Learning Objectives

  • The purpose of the ciyrse is to develop the ability to use neural network in their research and applied projects.
Expected Learning Outcomes

Expected Learning Outcomes

  • Has an idea of principles of building neural networks
  • Has an idea of the features of convolutional networks
  • Has an idea of the principles of neural networks training
  • Is able to work with Python libraries
  • Has an idea about the regularisation features
  • Has an idea of the basic principles of machine translation
Course Contents

Course Contents

  • Deep Learning
  • The Building Blocks of Neural Networks
  • Classification and Regression with Neural Networks
  • Fundamentals of Machine Learning
  • The Workflow of Machine Learning
  • The Transformer Architecture
  • Sequence-to-sequence learning
  • Modern Architectures for NLP
Assessment Elements

Assessment Elements

  • non-blocking Test
  • non-blocking Laboratory work 1
  • non-blocking Laboratory work 2
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2022/2023 3rd module
    0.15 * Laboratory work 2 + 0.15 * Laboratory work 1 + 0.3 * Test + 0.4 * Exam
Bibliography

Bibliography

Recommended Core Bibliography

  • Kelleher, J. D. (2019). Deep Learning. Cambridge: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2234376

Recommended Additional Bibliography

  • Антонио, Д. Библиотека Keras – инструмент глубокого обучения. Реализация нейронных сетей с помощью библиотек Theano и TensorFlow / Д. Антонио, П. Суджит , перевод с английского А. А. Слинкин. — Москва : ДМК Пресс, 2018. — 294 с. — ISBN 978-5-97060-573-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/111438 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Authors

  • FOKINA MARGARITA ANDREEVNA
  • MALAFEEV ALEKSEY YUREVICH