We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Network Structure Analysis

2022/2023
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Delivered at:
Department of Applied Mathematics and Informatics (Faculty of Informatics, Mathematics, and Computer Science (HSE Nizhny Novgorod))
Course type:
Compulsory course
When:
2 year, 1 module

Instructor

Программа дисциплины

Аннотация

Как отличить сеть развившуюся естественным образом от сети построенную искусственно; определить критические и наиболее важные элементы в сети; выделить сообщества в сетях; предсказать появления ребра; предсказать как сеть будет развиваться с течением времени – всё это вы узнаете в рамках данного курса.
Цель освоения дисциплины

Цель освоения дисциплины

  • Владеть методами кластеризации
  • Значить основные модели случайных графов
  • Владеть методами поиска наиболее важных элементов в сети
Планируемые результаты обучения

Планируемые результаты обучения

  • Знаем модели графов со свойствами "тесного мира". Может запрограммировать.
  • Знает концепцию DHT и принцип работы Chord протокола.
  • Знает основные характеристики графов
  • Понимает Page Rank алгоритм. Понимает модель случайного блуждателя
  • Понимает метод вложения графов в векторное пространство graph2vec
  • Понимает метод спектральной кластеризации. Может запрограммировать.
  • Понимает модель Клайнберга.
  • Понимает модель. Умеет вычислять вероятность возникновения фиксированной структуры,.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основные характеристики графов
  • Google’s PageRank, HITS
  • Случайные графы.
  • Модели графов со свойствами "тесного мира"
  • Алгоритмы кластеризации в сетях
  • Модели навигационных тесных миров
  • Методы вложения графов в векторные пространства.
Элементы контроля

Элементы контроля

  • неблокирующий Лабораторная работа-1
    Учащиеся пишут программный код задач. Решение отправляется онлайн в систему тестирования. Задача засчитывается после того, как программа успешно проходит все тесты.
  • неблокирующий Лабораторная работа-2
  • неблокирующий Лабораторная работа-3
  • неблокирующий Лабораторная работа-4
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 1 модуль
    0.25 * Лабораторная работа-3 + 0.25 * Лабораторная работа-2 + 0.25 * Лабораторная работа-4 + 0.25 * Лабораторная работа-1
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ming-Yang Kao. Encyclopedia of Algorithms. Springer, New York, NY, 2016

Рекомендуемая дополнительная литература

  • Panos M. Pardalos, Ding-Zhu Du, Ronald L. Graham. Handbook of Combinatorial Optimization. Springer Science+Business Media, New York, 2013.
  • Комбинаторика и теория вероятностей, учебное пособие, 99 с., Райгородский, А. М., 2013

Авторы

  • Пономаренко Александр Александрович
  • Калягин Валерий Александрович