We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Calculus

2021/2022
Academic Year
RUS
Instruction in Russian
9
ECTS credits
Course type:
Compulsory course
When:
1 year, 1-3 module

Instructors


Blyakhman, Liudmila G.

Программа дисциплины

Аннотация

Целями освоения дисциплины «Математический анализ» являются овладение основами математического анализа, приобретение навыков использования универсального понятийного аппарата и широкого арсенала технических приемов этих дисциплин при дальнейшем изучении профильных дисциплин, построении математических моделей различных экономических закономерностей и процессов, описании динамики социально–экономических систем и прогнозировании развития экономики. Достижение этих целей обеспечивает выпускнику получение высшего профессионально профилированного (на уровне бакалавра) образования и обладание перечисленными ниже общими и предметно-специализированными компетенциями. Они способствуют его социальной мобильности, устойчивости на рынке труда и успешной работе в самых разнообразных сферах (стратегическое планирование, аналитическая поддержка процессов принятия решений для управления предприятием и проч.). По дисциплине предусмотрены текущий контроль в форме письменных контрольных работ и итоговый контроль в форме экзамена. Итоговая оценка по дисциплине (оценка по промежуточной аттестации) выставляется с учетом результатов как текущего, так и итогового контроля. Правила выставления оценки по промежуточной аттестации определены Программой дисциплины, размещенной в открытом доступе на корпоративном сайте (портале) НИУ ВШЭ.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Математический анализ» являются овладение основами математического анализа, приобретение навыков использования универсального понятийного аппарата и широкого арсенала технических приемов этих дисциплин при дальнейшем изучении профильных дисциплин, построении математических моделей различных экономических закономерностей и процессов, описании динамики социально–экономических систем и прогнозировании развития экономики. Достижение этих целей обеспечивает выпускнику получение высшего профессионально профилированного (на уровне бакалавра) образования и обладание перечисленными ниже общими и предметно-специализированными компетенциями. Они способствуют его социальной мобильности, устойчивости на рынке труда и успешной работе в самых разнообразных сферах (стратегическое планирование, аналитическая поддержка процессов принятия решений для управления предприятием и проч.).
Планируемые результаты обучения

Планируемые результаты обучения

  • Корректно описывает комбинацию множеств. Решает задачи комбинаторики и мат. логики.
  • Находит двойные интегралы.
  • Находит интегралы ф-ии 1-й переменной. Использует интегралы в приложениях.
  • Находит пределы последовательностей, функций
  • Находит производные и дифференциалы ф-и 1-й переменой. Использует производные в приложениях.
  • Находит производные и дифференциалы ф-и многих переменых. Использует производные в приложениях.
  • Проверяет сходимость рядов. Находит область сходимости функциональных рядов.
  • Решает ОДУ 1 и 2 порядков
  • Строит графики ф-ий 1й переменой с использованием пределов и производных.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение в анализ. Предел последовательности и предел функции. Непрерывность функции
  • Дифференциальное исчисление функции одной переменной
  • Исследование графиков функций одной переменной
  • Интегральное исчисление функции одной переменной
  • Дифференциальное исчисление функции многих переменных
  • Двойные интегралы
  • Обыкновенные дифференциальные уравнения первого и второго порядков
  • Числовые и функциональные ряды
  • Элементы теории множеств. Элементы общей теории алгебраических систем. Комбинаторика. Математическая логика
Элементы контроля

Элементы контроля

  • неблокирующий контрольная 1
  • неблокирующий Контрольная 2
  • неблокирующий контрольная 3
  • неблокирующий экзамен
    Экзамен проводится в письменной форме с использованием асинхронного прокторинга. Экзамен проводится на платформе Moodle (https://et.hse.ru/), прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 3 модуль
    0.4 * экзамен + 0.3 * контрольная 1 + 0.3 * Контрольная 2
Список литературы

Список литературы

Рекомендуемая основная литература

  • Бугров Я. С., Никольский С. М. - ВЫСШАЯ МАТЕМАТИКА В 3 Т. ТОМ 3. В 2 КН. КНИГА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. КРАТНЫЕ ИНТЕГРАЛЫ 7-е изд. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2019 - 288с. - ISBN: 978-5-9916-8643-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/vysshaya-matematika-v-3-t-tom-3-v-2-kn-kniga-1-differencialnye-uravneniya-kratnye-integraly-437221
  • Зайцев В. Ф., Полянин А. Д. - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ПЕРВОГО ПОРЯДКА 2-е изд., испр. и доп. Учебное пособие для академического бакалавриата - М.:Издательство Юрайт - 2019 - 416с. - ISBN: 978-5-534-02377-0 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/differencialnye-uravneniya-s-chastnymi-proizvodnymi-pervogo-poryadka-437080
  • Ильин В.А., Садовничий В.А., Сендов Б.Х. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ Ч. 1 4-е изд., пер. и доп. Учебник для бакалавров - М.:Издательство Юрайт - 2016 - 660с. - ISBN: 978-5-9916-2733-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-ch-1-389342
  • Математика для экономистов, учебное пособие, 464 с., Красс, М. С., Чупрынов, Б.В., 2010
  • Математический анализ, учебник, Ч. 1, 7-е изд., новое доп., XII, 564 с., Зорич, В. А., 2015
  • Математический анализ, учебник, Ч. 2, 7-е изд., новое доп., XII, 675 с., Зорич, В. А., 2015
  • Новак Е. В., Рязанова Т. В., Новак И. В. ; Под общ. ред. Рязановой Т.В. - ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 112с. - ISBN: 978-5-534-08358-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/integralnoe-ischislenie-i-differencialnye-uravneniya-438160
  • Плотникова Е. Г., Левко С. В., Логинова В. В., Хакимова Г. М. ; Под общ. ред. Плотниковой Е. Г. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ И ДИСКРЕТНАЯ МАТЕМАТИКА 2-е изд., пер. и доп. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 300с. - ISBN: 978-5-534-07545-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-i-diskretnaya-matematika-441347
  • Судоплатов С. В., Овчинникова Е. В. - ДИСКРЕТНАЯ МАТЕМАТИКА 5-е изд., испр. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 279с. - ISBN: 978-5-534-00871-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/diskretnaya-matematika-432016
  • Судоплатов С. В., Овчинникова Е. В. - ДИСКРЕТНАЯ МАТЕМАТИКА 5-е изд., испр. и доп. Учебник и практикум для СПО - М.:Издательство Юрайт - 2019 - 279с. - ISBN: 978-5-534-11632-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/diskretnaya-matematika-445773

Рекомендуемая дополнительная литература

  • Математический анализ, расчётные задания, Ч. 1, 46 с., Бляхман, Л. Г., Бобков, Н. Н., Тютин, В. В., Малыженкова, В. И., 2007
  • Математический анализ, расчетные задания, Ч. 2, 35 с., Бляхман, Л. Г., Бобков, Н. Н., Тютин, В. В., Малыженкова, В. И., Захарова, Е. В., 2007

Авторы

  • Громов Евгений Михайлович