We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Calculus

2021/2022
Academic Year
RUS
Instruction in Russian
12
ECTS credits

Instructors

Программа дисциплины

Аннотация

Математический анализ занимает основополагающую позицию в образовании студентов специальности «математика», давая язык, логику и понятия, необходимые для овладения большинством математических дисциплин, таких как дифференциальные и интегральные уравнения, функциональный анализ, теория функций действительных переменных, теория функций комплексных переменных, вычислительные методы, дифференциальная геометрия, топология и других.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Математический анализ» является углубленное изучение основных понятий теории числовых и функциональных рядов, несобственных интегралов и интегралов, зависящих от параметра. Также в курс входит владение теорией криволинейных интегралов первого и второго рода, двойных и тройных интегралов; поверхностных интегралов первого и второго рода. Устанавливается взаимосвязь формул Грина, Остроградского-Гаусса, Стокса с понятиями теории поля: поток вектора через поверхность, ротор, циркуляция векторного поля.
  • Целями освоения дисциплины «Математический анализ» являются углубленное изучение основных понятий математического анализа (предельный переход, непрерывность, дифференцируемость, интегрируемость), овладение методами математического анализа функций одной и нескольких вещественных переменных (построение графиков, нахождение локальных и глобальных экстремумов функций), применение полученных знаний к анализу различных математических моделей.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать аксиоматическое определение поля вещественных чисел. Знать графики основных элементарных функций: прямая, парабола, кубическая парабола, окружность, гипербола, показательная и логарифмическая функции, тригонометрические функции, обратные тригонометрические функции и их свойства.
  • Знать определение и методы вычисления несобственного интеграла. Уметь применять признаки сходимости несобственных интегралов. Владеть знанием основных свойств гамма-функции и бета-функции и применять их для вычисления определённых интегралов.
  • Знать определение предела последовательности, основные свойства пределов, замечательные пределы. Знать определение предела функции, уметь графически его интерпретировать. Уметь вычислять пределы функций, исследовать функцию на непрерывность.
  • Знать определения предела, непрерывности, дифференцируемости функции многих переменных. Уметь вычислять частные производные, а также по направлению; строить касательную плоскость и нормаль к поверхности.Уметь находить экстремум функции нескольких переменных, её наибольшее и наименьшее значения. Владеть техникой нахождения условного экстремума.
  • Знать правила вычисления и таблицу интегралов. Уметь выбрать подходящий способ для вычисления интеграла функции. Владеть основными методами вычисления интегралов: замена переменной, интегрирование по частям, вычисление интеграла от рациональной функции. Знать замены, приводящие к интегралу от рациональной функции. Уметь вычислять с помощью определённого интеграла площадь плоской фигуры, длину дуги, объём и площадь поверхности тела вращения.
  • Знать признаки сходимости числовых рядов. Уметь находить радиус и интервал сходимости степенного ряда; область сходимости функционального ряда. Владеть техникой разложения функций в ряд Тейлора.
  • Знать таблицу производных и правила их вычисления. Владеть техникой вычисления производной функции заданной явно, неявно, параметрически. Уметь использовать правило Лопиталя для вычисления пределов.Знать разложения основных элементарных функций по формуле Маклорена. Уметь провести исследование функции с помощью производной и построить её график. Уметь находить наибольшее и наименьшее значения функции на отрезке.
  • Студент умеет интегрировать и дифференцировать несобственные интегралы, зависящие от параметра. Вычисляет эти интегралы по формуле Фруллани, с помощью сведения к интегралам Пуассона, Дирихле, Лапласа
  • Уметь вычислять определенные интегралы от скалярных и векторных полей, криволинейные интегралы первого и второго рода. Уметь вычислять двойные и тройные интегралы. Знать формулу Грина. Уметь вычислять поверхностные интегралы первого и второго рода. Знать формулу Остроградского-Гаусса, формулу Стокса. Владеть понятиями: поток вектора через поверхность, ротор, циркуляция векторного поля. Знать классификацию векторных полей.
  • Уметь вычислять определенные интегралы от скалярных и векторных полей, криволинейные интегралы первого и второго рода. Уметь вычислять двойные и тройные интегралы. Знать формулу Грина. Уметь вычислять поверхностные интегралы первого и второго рода. Знать формулу Остроградского-Гаусса, формулу Стокса. Владеть понятиями: поток вектора через поверхность, ротор, циркуляция векторного поля. Знать классификацию векторных полей.
  • Уметь дифференцировать и интегрировать собственные и несобственные интегралы, зависящие от параметра. Уметь исследовать на равномерную сходимость несобственные интегралы, зависящие от параметра. Знать интеграл Фурье и преобразование Фурье.
  • Уметь применять ряды Тейлора для приближенных вычислений значений функций, интегралов, для решения дифференциальных уравнений. Уметь раскладывать в ряд Фурье четные, нечетные, функций общего вида.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение в анализ
  • Ряды
  • Пределы последовательности и функции. Непрерывность функции
  • Несобственные интегралы и интегралы с параметром
  • Дифференциальное исчисление функций одной переменной
  • Интегральное исчисление функций одной переменной
  • Функциональные ряды. Ряды Фурье.
  • Дифференциальное исчисление функций многих переменных
  • Вычисление несобственных интегралов, зависящих от параметра.
  • Дифференцирование и интегрирование интегралов по параметру. Интеграл Фурье и преобразование Фурье.
  • Теория поля
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
  • неблокирующий Коллоквиум
  • неблокирующий Итоговый устный опрос
  • неблокирующий Контрольная работа
  • неблокирующий Итоговый устный опрос
  • неблокирующий Контрольная работа
  • неблокирующий Итоговый устный опрос
  • неблокирующий Работа на занятиях
Промежуточная аттестация

Промежуточная аттестация

  • 2020/2021 учебный год 2 модуль
    0.4 * Итоговый устный опрос + 0.3 * Контрольная работа + 0.3 * Коллоквиум
  • 2020/2021 учебный год 4 модуль
    0.2 * Коллоквиум + 0.3 * Контрольная работа + 0.3 * Итоговый устный опрос + 0.2 * Работа на занятиях
  • 2021/2022 учебный год 2 модуль
    0.5 * Итоговый устный опрос + 0.5 * Контрольная работа
  • 2021/2022 учебный год 4 модуль
    0.5 * Контрольная работа + 0.5 * Итоговый устный опрос
Список литературы

Список литературы

Рекомендуемая основная литература

  • Максимова О. Д. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В ПРИМЕРАХ И ЗАДАЧАХ. ПРЕДЕЛ ФУНКЦИИ 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 200с. - ISBN: 978-5-534-07222-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-primerah-i-zadachah-predel-funkcii-442137
  • Максимова О. Д. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В ПРИМЕРАХ И ЗАДАЧАХ. ПРЕДЕЛ ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 177с. - ISBN: 978-5-534-07208-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-primerah-i-zadachah-predel-chislovoy-posledovatelnosti-442138
  • Математический анализ в вопросах и задачах, учебное пособие, под ред. В. Ф. Бутузова, 5-е изд., испр., 480 с., Бутузов, В. Ф., Крутицкая, Н. Ч., Медведев, Г. Н., Шишкин, А. А., 2002
  • Математический анализ, учебник, Ч. 1, 7-е изд., новое доп., XII, 564 с., Зорич, В. А., 2015
  • Никитин А. А., Фомичев В. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. УГЛУБЛЕННЫЙ КУРС 2-е изд., испр. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 460с. - ISBN: 978-5-534-00464-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-uglublennyy-kurs-432899
  • Садовничая И. В., Фоменко Т. Н. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 2-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 206с. - ISBN: 978-5-534-06584-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-funkcii-mnogih-peremennyh-438941
  • Садовничая И. В., Фоменко Т. Н. ; Под общ. ред. Ильина В.А. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 2-е изд., пер. и доп. Учебное пособие для академического бакалавриата - М.:Издательство Юрайт - 2019 - 115с. - ISBN: 978-5-534-08473-3 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-predel-i-nepreryvnost-funkcii-odnoy-peremennoy-441132
  • Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В., Ильин В. А. ; Под общ. ред. Ильина В.А. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ВЕЩЕСТВЕННЫЕ ЧИСЛА И ПОСЛЕДОВАТЕЛЬНОСТИ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 109с. - ISBN: 978-5-534-08472-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-veschestvennye-chisla-i-posledovatelnosti-441194
  • Садовничая И. В., Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ В 2 Ч. ЧАСТЬ 2 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 199с. - ISBN: 978-5-534-06836-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-opredelennyy-integral-v-2-ch-chast-2-441163
  • Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 187с. - ISBN: 978-5-534-06949-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-neopredelennyy-integral-441157

Рекомендуемая дополнительная литература

  • Капкаева Л. С. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ТЕОРИЯ ПРЕДЕЛОВ, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ 2-е изд., испр. и доп. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 246с. - ISBN: 978-5-534-04898-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-teoriya-predelov-differencialnoe-ischislenie-438965
  • Математический анализ, учебник, Ч. 2, 7-е изд., новое доп., XII, 675 с., Зорич, В. А., 2015
  • Потапов А. П. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ В 2 Ч. ЧАСТЬ 1. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 256с. - ISBN: 978-5-534-04680-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencialnoe-i-integralnoe-ischislenie-funkciy-odnoy-peremennoy-v-2-ch-chast-1-433687
  • Потапов А. П. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФНП, УРАВНЕНИЯ И РЯДЫ. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 379с. - ISBN: 978-5-534-08280-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencialnoe-ischislenie-f-n-p-uravneniya-i-ryady-424735
  • Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 156с. - ISBN: 978-5-534-06596-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencirovanie-funkciy-odnoy-peremennoy-441179

Авторы

  • Галкина Светлана Юрьевна
  • Починка Ольга Витальевна
  • Медведев Тимур Владиславович