We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Introduction to Topology

2023/2024
Academic Year
RUS
Instruction in Russian
7
ECTS credits

Instructors

Программа дисциплины

Аннотация

При изучении курса студенты знакомятся с основными понятиями топологии, такими как фундаментальная группа топологического пространства, гомотопическая эквивалентность и клеточные разбиения топологических пространств, а также приложениями. Усвоению материала способствует решение многочисленных упражнений и задач.
Цель освоения дисциплины

Цель освоения дисциплины

  • Изучение основ топологии, необходимых для освоения других математических дисциплин, и развитию практических навыков решения топологических задач. Формирование у студентов представления о топологии как одной из важнейших математических дисциплин, имеющей свой предмет, задачи и методы.
Планируемые результаты обучения

Планируемые результаты обучения

  • В результате освоения дисциплины студент должен: • Знать основные определения и результаты (теоремы) изучаемых разделов топологии. • Уметь решать типовые теоретические и вычислительные задачи изучаемых разделов. • Иметь навыки (приобрести опыт) применения топологических методов в смежных теоретических и прикладных областях.
  • В результате освоения студент должен знать основные понятия и теоремы раздела и уметь применять полученные знания к решению задач.
  • Знает основные понятия и теоремы раздела, умеет решать задачи. Умеет доказывать основные теоремы и применять их к решению задач
  • Имеет навыки работы с фактор- пространствами Умеет определять канонический вид поверхности по ее представлению правильным семейством многоугольников. Знает схему доказательства классификационной теоремы и умеет вычислять топологические инварианты поверхности.
  • Уметь доказывать и применять теорему Брауэра о неподвижной точке. Иметь представление о гипотезе Пуанкаре и ее решении Георгием Перельманом.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Общая топология
  • Топологические многообразия с краем. Топологическая классификация замкнутых поверхностей
  • Фундаментальная группа топологического пространства
  • Топологическая и гомотопическая эквивалентность топологических пространств
  • Применение гомотопической топологии
Элементы контроля

Элементы контроля

  • неблокирующий Коллоквиум
  • неблокирующий Контрольная работа
  • неблокирующий Устный опрос
  • неблокирующий Устный опрос
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 2 модуль
    0.2 * Коллоквиум + 0.15 * Контрольная работа + 0.15 * Контрольная работа + 0.5 * Устный опрос
  • 2023/2024 учебный год 4 модуль
    0.2 * Коллоквиум + 0.15 * Контрольная работа + 0.15 * Контрольная работа + 0.5 * Устный опрос
Список литературы

Список литературы

Рекомендуемая основная литература

  • Краткий курс дифференциальной геометрии и топологии, учебник, Московский гос. ун-т им. М. В. Ломоносова, 2-е изд., испр., 307 с., Мищенко, А. С., Фоменко, А. Т., 2016
  • Сборник задач по дифференциальной геометрии и топологии, под общ. ред. акад. А. Т. Фоменко, 409 с., Мищенко, А. С., Соловьев, Ю. П., Фоменко, А. Т., 2016
  • Топология для младшекурсников, [учебник], 159 с., Васильев, В. А., 2014
  • Элементы комбинаторной и дифференциальной топологии, 2-е изд., испр. и доп., 358 с., Прасолов, В. В., 2014

Рекомендуемая дополнительная литература

  • Прасолов, В. В. Задачи по топологии / В. В. Прасолов. — Москва : МЦНМО, 2014. — 38 с. — ISBN 978-5-4439-3009-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/80151 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Авторы

  • Жукова Нина Ивановна