We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Differential Equations

2020/2021
Academic Year
ENG
Instruction in English
8
ECTS credits

Instructor

Course Syllabus

Abstract

Изучение дисциплины «Дифференциальные уравнения и динамические системы» опирается на материал курсов «Математический анализ», «Алгебра», «Геометрия» и «Топология» в объеме первого курса, тесно связана с научно-исследовательским семинаром «Непрерывные динамические системы с визуализацией в системе Python», который читается параллельно на 2 курсе, и закладывает основу для понимания последующих дисциплин «Дополнительные главы дифференциальных уравнений и динамических систем», «Уравнения математической физики», а также научных семинаров старших курсов. Материал курса «Дифференциальные уравнения и динамические системы» является важнейшей частью базовой подготовки специалиста по математике.
Learning Objectives

Learning Objectives

  • Целью освоения дисциплины «Дифференциальные уравнения и динамические системы» является формирование у будущих специалистов теоретических знаний в области классической и современной теории дифференциальных уравнений, динамических систем и их приложений. В результате изучения курса дифференциальных уравнений уравнений студент должен: знать основные понятия и теоремы в области дифференциальных уравнений и динамических систем; уметь решать типовые задачи; приобрести опыт применения дифференциальных уравнений и динамических систем в приложениях.
Expected Learning Outcomes

Expected Learning Outcomes

  • Решает задачи и доказывает утверждения по теме модуля
Course Contents

Course Contents

  • Дифференциальные уравнения и динамические системы на прямой и окружности
    Общие понятия дифференциальных уравнений; поле направлений, решения; интегральные кривые; задача Коши. Теорема существования и единственности решения задачи Коши. Метод изоклин построения интегральных кривых уравнения первого порядка. Задачи, приводящие к дифференциальным уравнениям. Приемы интегрирования уравнений 1-го порядка. Уравнения с разделяющимися переменными, линейные уравнения первого порядка, уравнения в полных дифференциалах. Нелинейный осциллятор, системы Вольтерра-Лотки.
  • Теорема существования и единственности решения задачи Коши системы дифференциальных уравнений
    Доказательство теоремы методом последовательных приближений Пикара. Особые точки и особые решения.
  • Линейные уравнения
    Линейные неоднородные уравнения. Теорема о структуре решения. Метод вариации постоянных. Уравнения n-ого порядка с постоянными коэффициентами. Колебания маятника. Резонанс.
  • Системы линейных дифференциальных уравнений
    Структура пространства решений систем с постоянными коэффициентами. Метод вариации постоянных.
  • Непрерывная зависимость решения от параметра. Автономные системы и векторные поля
    Непрерывная зависимость решения от параметра. Автономные системы и векторные поля. Поток векторного поля. Особые точки векторных полей. Индекс особой точки. Классификация особых точек систем второго порядка. Устойчивость решений по Ляпунову.
  • Дифференцируемость решения по параметру. Асимптотические методы решения дифференциальных уравнений
    Дифференцируемость решения по параметру. Асимптотические методы решения дифференциальных уравнений. Первые интегралы. Уравнения с частным и производными первого порядка.
  • Динамические системы на многообразиях
    Динамические системы на многообразиях. Топологическая эквивалентность и топологическая сопряженности. Понятие структурной устойчивости. Критерий грубости потоков на двумерной сфере. Потоки и каскады Морса-Смейла. Теория Пуанкаре-Бендиксона. Связь динамики гра- диентно-подобных систем и топологии несущего многообразия. Формула Эйлера-Пуанкаре. Энергетическая функция. Подходы к топологической классификации систем Морса-Смейла на поверхностях.
  • Линейная теория
    Линейные однородные уравнения и системы n-ого порядка. Теорема о структуре решения. Линейные уравнения и системы n-ого порядка с постоянными коэффициентами. Линейные осцилляторы. Классификация простых состояний равновесия систем второго порядка.
Assessment Elements

Assessment Elements

  • non-blocking контрольная работа
  • non-blocking контрольная работа
  • non-blocking экзамен
Interim Assessment

Interim Assessment

  • Interim assessment (2 module)
    0.5 * контрольная работа + 0.5 * экзамен
  • Interim assessment (4 module)
    0.5 * Interim assessment (2 module) + 0.5 * экзамен
Bibliography

Bibliography

Recommended Core Bibliography

  • Аносов Д.В. - Дифференциальные уравнения: то решаем, то рисуем - Московский центр непрерывного математического образования - 2010 - 200с. - ISBN: 978-5-94057-604-4 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/9281
  • Боровских А. В., Перов А. И. - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В 2 Ч. ЧАСТЬ 1 3-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 327с. - ISBN: 978-5-534-01777-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/differencialnye-uravneniya-v-2-ch-chast-1-434022
  • Боровских А. В., Перов А. И. - ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В 2 Ч. ЧАСТЬ 2 3-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 274с. - ISBN: 978-5-534-02097-7 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/differencialnye-uravneniya-v-2-ch-chast-2-434701

Recommended Additional Bibliography

  • Арнольд В.И. - Обыкновенные дифференциальные уравнения - Московский центр непрерывного математического образования - 2012 - 341с. - ISBN: 978-5-4439-2007-8 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/56392
  • Обыкновенные дифференциальные уравнения и система Maple: Учебное пособие / Егоров А.И. - М.:СОЛОН-Пр., 2016. - 392 с.: ISBN 978-5-91359-205-7
  • Тихонов А.Н., Васильева А.Б., Свешников А.Г. - Дифференциальные уравнения - Издательство "Физматлит" - 2002 - 256с. - ISBN: 978-5-9221-0277-3 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/48171