We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Analysis

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits

Instructor


Bagautdinova, Elmira

Программа дисциплины

Аннотация

Курс "Анализ данных на Python" нацелен на изучение языка программирования Python и получение базовых знаний и навыков для обработки, визуализации и статистического анализа данных, а также дальнейшего прохождения более специализированных курсов в этой области (например, машинного обучения). Первая часть дисциплины отведена на изучение основ языка Python, по итогам которой слушатели узнают о типах и структурах данных и освоят такие базовые понятия программирования, как условные операторы, функции, рекурсии и циклы. В рамках курса будут пройдены основы различных парадигм программирования: процедурное, функциональное и объектно-ориентированное программирование. Слушатели научатся решать задачи по парсингу, препроцессингу и визуализации данных с помощью стандартных и внешних библиотек Python. С использованием онлайн-курса "Основы программирования на Python" [URL:https://ru.coursera.org/learn/python-osnovy-programmirovaniya].
Цель освоения дисциплины

Цель освоения дисциплины

  • Ознакомление студентов с основами программирования на языке Python
  • Получение навыков обработки и анализа данных с применением библиотек языка Python
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать основные структуры данных и парадигмы программирования
  • Знать синтаксис и семантику основных конструкций языка программирования Python
  • Уметь собирать, предобрабатывать и визуализировать данные и выводить их описательные статистики
  • Уметь формулировать аналитическую задачу и реализовывать ее выполнение на Python
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение в инструменты
  • Введение в статистику. Базовые манипуляции с данными
  • Типы данных. Создание новых переменных
  • Генеральная совокупность и выборка. Частотные таблицы и распределения
  • Описательные статистики: меры центральной тенденции и разброса
  • Z-оценка. Выбросы.
  • Корреляция
  • Введение в визуализацию данных
  • Продвинутая визуализация данных
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
  • блокирующий Экзамен
  • неблокирующий Домашние задания
  • неблокирующий Тесты
  • неблокирующий Исследовательский проект и защита
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    0.2 * Домашние задания + 0.3 * Исследовательский проект и защита + 0.2 * Контрольная работа + 0.1 * Тесты + 0.2 * Экзамен

Авторы

  • Ноздринова Елена Вячеславовна
  • Багаутдинова Эльмира Рафиковна