• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
River basin councils: evidence from Russia

Aladyshkina A. S., Lakshina V. V., Leonova L.

In bk.: Water Science and Sustainability. Springer, 2021. Ch. 8. P. 101-108.

Статья
Использование байесовских методов для макроэкономического моделирования фаз бизнес-цикла

Гусева М. Е., Силаев А. М.

Вестник Санкт-Петербургского университета. Серия 5. Экономика. 2021. Т. 37. № 2. С. 298-317.

Статья
Hedonic Pricing on the Fine Art Market

Zhukova A., Lakshina V. V., Leonova L.

Information (Switzerland). 2020. Vol. 11. No. 5. P. 252.

Статья
Do portfolio investors need to consider the asymmetry of returns on the Russian stock market?

Lakshina V. V.

Journal of Economic Asymmetries. 2020. Vol. 21. P. e00152.

Анализ данных в финансах

2024/2025
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

During the course, students gain practical abilities in using modern computer software and utilise the tools required to analyze financial data. The course covers the following main topics: importing financial data, primary processing and visualization, building a trading robot and evaluating the efficacy of the chosen strategy, cluster analysis, forming an investment portfolio, estimating the parameters of empirical models, forecasting.
Цель освоения дисциплины

Цель освоения дисциплины

  • The goal of this course is to develop and improve skills in financial data analysis with Python.
Планируемые результаты обучения

Планируемые результаты обучения

  • Importing data from various sources
  • Preprocess financial data
  • Visualize financial data
  • Perform event study
  • Perform cluster analysis
  • Perform time series analysis
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Data import
  • Data preprocessing
  • Data visualization
  • Event study
  • Cluster analysis
  • Time series
Элементы контроля

Элементы контроля

  • неблокирующий Activity at seminars
  • неблокирующий Exam
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    0.5 * Activity at seminars + 0.5 * Exam
Список литературы

Список литературы

Рекомендуемая основная литература

  • Brooks,Chris. (2019). Introductory Econometrics for Finance. Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.cup.cbooks.9781108422536

Рекомендуемая дополнительная литература

  • Lewinson, E. (2020). Python for Finance Cookbook : Over 50 Recipes for Applying Modern Python Libraries to Financial Data Analysis. Packt Publishing.
  • Weiming, J. M. (2019). Mastering Python for Finance : Implement Advanced State-of-the-art Financial Statistical Applications Using Python, 2nd Edition (Vol. Second edition). Birmingham, UK: Packt Publishing. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2116431

Авторы

  • Ларин Александр Владимирович