Лекция КПМГ для магистров 1-го и 2-го курсов
Докладчик: Денис Волк, КПМГ (https://sites.google.com/site/denissergeevichvolk/)
27 Ноября 18.00 - 19:30
Ауд. 403, ул. Родионова 136
Тема: Математические модели в нейронауке
Тема: Математические модели в нейронауке
Аннотация: Всякий раз, когда мы пытаемся количественно описать поведение объектов или систем объектов окружающего нас мира, возникает математическая модель.
Хорошая, годная модель отличается следующими свойствами:
1) она значительно проще, чем описываемая ей система
2) однако, она отражает все важные нам аспекты поведения системы
3) она имеет предсказательную силу: будущее, предсказываемое моделью, хорошо согласуется с результатами проверочных экспериментов
Например, законы Ньютона позволяют построить модель падения яблока на землю. Яблоко заменяется на точку, которая движется с постоянным ускорением в направлении земли. Если нам важно уметь определять мгновенную скорость яблока и время падения, то это прекрасная модель, удовлетворяющая всем вышеперечисленным свойствам.
Работа человеческого мозга неизмеримо сложнее, чем падение яблока. Даже отдельная нервная клетка - нейрон - представляет собой весьма сложную биологическую систему. Однако, оказывается, что всю самую важную его функциональность можно свести к небольшому числу дифференциальных уравнений. Я покажу, как методы качественной теории дифференциальных уравнений (по-простому, теории картинок из стрелочек, нарисованных на плоскости или в пространстве) позволяют делать верные предсказания о поведении нейронов в ситуациях, ранее не наблюдавшихся экспериментально.