• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Математический анализ 1

2021/2022
Учебный год
RUS
Обучение ведется на русском языке
8
Кредиты

Преподаватели

Программа дисциплины

Аннотация

Курс математического анализа включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию числовых и функциональных рядов.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины «Математический анализ» являются углубленное изучение основных понятий математического анализа (предельный переход, непрерывность, дифференцируемость, интегрируемость), овладение методами математического анализа функций одной и нескольких вещественных переменных (построение графиков, нахождение локальных и глобальных экстремумов функций), применение полученных знаний к анализу различных математических моделей экономических явлений и решению бизнес-задач
Планируемые результаты обучения

Планируемые результаты обучения

  • Студент должен продемонстрировать хороший уровень знаний основных определений, теорем, методов, доказательств некоторых теоретических положений курса. При решении практической задачи студент должен показать умение анализировать и применять теоретические факты к решению конкретной задачи и продемонстрировать навыки решения данного класса задач.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • 1. Введение в анализ. Элементы теории множеств и функций
  • 2. Предел последовательности.
  • 3. Предел функции.
  • 4. Непрерывные функции.
  • 5. Дифференциальное исчисление функций одной переменной.
  • 6. Интегральное исчисление функций одной переменной.
  • 8. Числовые и функциональные ряды.
  • 7. Дифференциальное исчисление функций многих переменных.
Элементы контроля

Элементы контроля

  • неблокирующий контрольная работа
  • неблокирующий Домашнее задание
  • неблокирующий Промежуточный экзамен
  • неблокирующий Итоговый экзамен
    Экзамен проводится в письменной форме с использованием асинхронного прокторинга. Экзамен проводится на платформе Zoom (https://zoom.us), прокторинг на платформе Экзамус (https://hse.student.examus.net). К экзамену необходимо подключиться за 15 минут. На платформе Экзамус доступно тестирование системы. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 2 модуль
    Накопленная оценка за текущий контроль в 1и 2 модулях учитывает результаты студента по текущему контролю следующим образом: Онакопленная1 = ( Окр1+Оаудиторнная )/2, где Окр1 - оценка за контрольную работу 1, Оаудиторнная - оценка за работу на семинарских занятиях (оценивается правильность решения задач и активность студента). Результирующая оценка за промежуточный контроль в форме экзамена в конце 2 модуля выставляется по следующей формуле: Опромежуточный = 0,6·Оэкзамен +0,4·Онакопленная1 , где Оэкзамен – оценка за письменную экзаменационную работу.
  • 2021/2022 учебный год 4 модуль
    Накопленная оценка за текущий контроль в 3 и 4 модулях учитывает результаты студента по текущему контролю следующим образом: Онакопл2 = (Окр2+ ОДЗ + Оаудиторнная)/3, где Окр2 - оценка за контрольную работу 2, Оаудиторнная - оценка за работу на семинарских занятиях (оценивается правильность решения задач и активность студента), ОДЗ- оценка за домашнее задание. Результирующая оценка за дисциплину рассчитывается следующим образом: ОРезульт Итог = 0,4·ОНакопл2 + 0,6·ОИтог экзамен, где ОИтог экзамен – оценка за итоговую экзаменационную письменную работу.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Курс математического анализа, учебник для академического бакалавриата : в 3 т., Т. 2 : в 2 кн. Кн. 1, 6-е изд., перераб. и доп., 396 с., Кудрявцев, Л. Д., 2017
  • Максимова О. Д. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ В ПРИМЕРАХ И ЗАДАЧАХ. ПРЕДЕЛ ФУНКЦИИ 2-е изд. Учебное пособие для вузов - М.:Издательство Юрайт - 2019 - 200с. - ISBN: 978-5-534-07222-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-v-primerah-i-zadachah-predel-funkcii-442137
  • Математический анализ, учебник, Ч. 1, 7-е изд., новое доп., XII, 564 с., Зорич, В. А., 2015
  • Математический анализ, учебник, Ч. 2, 7-е изд., новое доп., XII, 675 с., Зорич, В. А., 2015
  • Садовничая И. В., Фоменко Т. Н. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ 2-е изд., пер. и доп. Учебник и практикум для академического бакалавриата - М.:Издательство Юрайт - 2019 - 206с. - ISBN: 978-5-534-06584-8 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-funkcii-mnogih-peremennyh-438941
  • Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 156с. - ISBN: 978-5-534-06596-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-differencirovanie-funkciy-odnoy-peremennoy-441179
  • Садовничая И. В., Фоменко Т. Н., Хорошилова Е. В., Ильин В. А. ; Под общ. ред. Ильина В.А. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ВЕЩЕСТВЕННЫЕ ЧИСЛА И ПОСЛЕДОВАТЕЛЬНОСТИ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 109с. - ISBN: 978-5-534-08472-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-veschestvennye-chisla-i-posledovatelnosti-441194
  • Хорошилова Е. В. - МАТЕМАТИЧЕСКИЙ АНАЛИЗ: НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 2-е изд., пер. и доп. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 187с. - ISBN: 978-5-534-06949-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematicheskiy-analiz-neopredelennyy-integral-441157