Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

603093 Н.Новгород,ул. Родионова, 136

603095 Н.Новгород,ул. Львовская, 1В

603155 Н.Новгород,ул. Б.Печерская, д.25/12

Статья
SensorDBSCAN: Semi-Supervised Active Learning Powered Method for Anomaly Detection and Diagnosis

Ivanov P., Shtark M., Kozhevnikov A. et al.

IEEE Access. 2025. Vol. 13. P. 25186-25197.

Глава в книге
Elements of Sustainable Enterprise Architecture for the Energy Sector Business Modeling

Malyzhenkov P. V., Rossi F., Masi M.

In bk.: Information Systems for Intelligent Systems. Proceedings of ISBM 2024, Volume 2. (SIST, volume 431). Vol. 2. Springer, 2025. P. 27-37.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Контакты

603093 Н.Новгород,ул. Родионова, 136

603095 Н.Новгород,ул. Львовская, 1В

603155 Н.Новгород,ул. Б.Печерская, д.25/12

2D image processing

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
6
Кредиты

Преподаватель

Course Syllabus

Abstract

The course is devoted to the usage of computer vision libraries like OpenCV in 2d image processing. The course includes sections of image filtering and thresholding, edge/corner/interest point detection, local and global descriptors, video tracking.
Learning Objectives

Learning Objectives

  • Learning the main algorithms of traditional image processing.
  • Thorough understanding of benefits and limitations of traditional image processing.
Expected Learning Outcomes

Expected Learning Outcomes

  • Apply image binarization techniques.
  • Apply local filters for image smoothing.
  • Apply object detection, image retrieval and/or image segmentation in practice.
  • Apply point-wise operations for image contrast enhancements.
  • Create panoramas with image stitching.
  • Detect objects with the Viola-Jones method.
  • Display video from web-camera and video files.
  • Distinguish image color models.
  • Distinguish the main tasks of computer vision and 2d image processing.
  • Find correspondent parts in different images.
  • Perform denoising in binary images with mathematical morphology.
  • Perform image processing operations for video frames.
  • Process grayscale and color images.
  • Segment objects in binary images.
  • Set-up environment (OpenCV library) for C++/Python development on Windows and Linux/MacOS.
  • Solve content-based image retrieval tasks.
  • Track object movements in videos.
  • Use FFT (Fast Fourier transform) for image filtering.
Course Contents

Course Contents

  • 2D image processing overview
  • Basic operations of 2D image processing
  • Local (spatial) image filtering
  • Image matching and local descriptors
  • Image classification and object detection
  • 2D image segmentation and object tracking. Final project
Assessment Elements

Assessment Elements

  • non-blocking Programming assignment
  • non-blocking Final exam
  • non-blocking Weekly Quizzes
Interim Assessment

Interim Assessment

  • 2024/2025 2nd module
    0.4 * Final exam + 0.4 * Programming assignment + 0.2 * Weekly Quizzes
Bibliography

Bibliography

Recommended Core Bibliography

  • Prince, S. J. D. (2012). Computer Vision : Models, Learning, and Inference. New York: Cambridge eText. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=458656

Recommended Additional Bibliography

  • Richard Szeliski. (2010). Computer Vision: Algorithms and Applications. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C0E46D49

Authors

  • DEMIDOVSKIY ALEKSANDR VLADIMIROVICH
  • Savchenko Andrei Vladimirovich