• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Теория вероятностей и математическая статистика

2022/2023
Учебный год
RUS
Обучение ведется на русском языке
8
Кредиты

Преподаватель

Программа дисциплины

Аннотация

В курсе рассматриваются основные модели теории вероятностей и математической статистики. Это позволит студентам вычислять и оценивать вероятности случайных событий и характеристики случайных величин, использовать основные законы теории вероятностей и математической статистики в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью освоения дисциплины «Теория вероятностей и математическая статистика» является изучение студентами методов теории вероятностей и математической статистики.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать методы точечного оценивания параметров..
  • Знать основные понятия многомерного статистического анализа.
  • Знать получение схемы Бернулли.
  • Знать типовые критерии согласия.
  • Изучить и уметь доказывать простейший вариант центральной предельной теоремы.
  • Изучить и уметь применять понятие характеристической функции.
  • Изучить основные понятия математической статистики.
  • Изучить основные понятия теории случайных процессов.
  • Изучить понятие случайной величины. и функции распределения.
  • Изучить теория Неймана-Пирсона.построения оптимальных тестов проверки простой гипотезы против простой альтернативы
  • Изучить типовые случайные величины.
  • Изучить типовые случайные процессы.
  • Изучить типы связи случайных величин
  • Понимать и уметь использовать числовые характеристики случайной величины.
  • Понимать концепцию случайного вектора. Изучить понятие многомерное распределение.
  • Понимать основные понятия выборочного метода.
  • Разбираться в числовых характеристиках случайного вектора.
  • Уметь вычислять вероятность случайного события. Знать основные модели элементарной теории вероятностей.
  • Уметь использовать вероятностное интегральное преобразование.
  • Уметь проверять гипотезы о параметрах многомерного распределения.
  • Уметь строить интервальные оценки параметров.
  • Уметь строить оптимальные тесты проверки гипотез.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • 1.2. Схема Бернулли.
  • 2. Случайная величина. 2.1. Распределение.
  • 2.2. Типовые случайные величины.
  • 3. Случайный вектор. 3.1. Многомерное распределение.
  • 3.2. Типы связи случайных величин.
  • 4. Числовые характеристики. 4.1. Числовые характеристики случайной величины.
  • 4.2. Числовые характеристики случайного вектора.
  • 5. Предельные теоремы. 5.1. Характеристическая функция.
  • 5.2. Центральная предельная теорема.
  • 7. Введение в математическую статистику. 7.1. Основные понятия.
  • 7.2. Выборочный метод.
  • 8. Оценивание параметров. 8.1. Точечные оценки.
  • 8.2. Интервальные оценки.
  • 9. Критерии согласия 9.1. Типовые критерии согласия.
  • 9.2. Вероятностное интегральное преобразование.
  • 10. Теория Неймана-Пирсона. 10.1. Тесты Неймана-Пирсона.
  • 10.2. Оптимальные тесты проверки гипотез.
  • 1. Вероятность случайного события.1.1. Элементарная теория вероятностей.
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
    " Экзамен проводится на платформе MS Teams (https://teams.microsoft.com). Для участия в экзамене студент обязан: включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи."
  • неблокирующий самостоятельные работы
  • неблокирующий Экзамен
    "Экзамен проводится в письменной форме. Экзамен проводится на платформе MS Teams (https://teams.microsoft.com),. К экзамену необходимо подключиться за 15 минут. Компьютер студента должен удовлетворять следующим требованиям: https://elearning.hse.ru/data/2020/05/07/1544135594/Технические%20требования%20к%20ПК%20студента.pdf) Для участия в экзамене студент обязан: включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 10 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 10 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи."
  • неблокирующий самостоятельные работы
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.5 * самостоятельные работы + 0.5 * Экзамен
  • 2022/2023 учебный год 4 модуль
    0.25 * Экзамен + 0.5 * 2022/2023 учебный год 2 модуль + 0.25 * самостоятельные работы
Список литературы

Список литературы

Рекомендуемая основная литература

  • Иванов Б.Н. - Теория вероятностей и математическая статистика: учебное пособие - Издательство "Лань" - 2019 - ISBN: 978-5-8114-3636-1 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/113901
  • Кацко И.А., Бондаренко П.С., Горелова Г.В. - Теория вероятностей и математическая статистика - КноРус - 2019 - ISBN: 978-5-406-06704-8 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/930219
  • Малугин В. А. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Учебник и практикум для бакалавриата и магистратуры - М.:Издательство Юрайт - 2019 - 470с. - ISBN: 978-5-534-05470-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-441337
  • Малугин В. А. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Учебник и практикум для СПО - М.:Издательство Юрайт - 2019 - 470с. - ISBN: 978-5-534-06572-5 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-441409
  • Попов А. М., Сотников В. Н. ; Под ред. Попова А.М. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА 2-е изд., испр. и доп. Учебник для СПО - М.:Издательство Юрайт - 2019 - 434с. - ISBN: 978-5-534-01058-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-433536

Рекомендуемая дополнительная литература

  • Алибеков И.Ю. - Теория вероятностей и математическая статистика в среде MATLAB: учебное пособие - Издательство "Лань" - 2019 - 184с. - ISBN: 978-5-8114-3846-4 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/121484
  • Бондаренко П.С., Горелова Г.В., Кацко И.А. под ред. и др. - Теория вероятностей и математическая статистика - КноРус - 2017 - ISBN: 978-5-406-05578-6 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/920636
  • Кацман Ю. Я. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. ПРИМЕРЫ С РЕШЕНИЯМИ. Учебник для прикладного бакалавриата - М.:Издательство Юрайт - 2019 - 130с. - ISBN: 978-5-534-10082-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-primery-s-resheniyami-433980
  • Кацман Ю. Я. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. ПРИМЕРЫ С РЕШЕНИЯМИ. Учебник для СПО - М.:Издательство Юрайт - 2019 - 130с. - ISBN: 978-5-534-10083-9 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-primery-s-resheniyami-434011
  • Кремер Н. Ш. - ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В 2 Ч. ЧАСТЬ 1. ТЕОРИЯ ВЕРОЯТНОСТЕЙ 4-е изд., пер. и доп. Учебник и практикум для бакалавриата и специалитета - М.:Издательство Юрайт - 2018 - 264с. - ISBN: 978-5-534-01925-4 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-veroyatnostey-i-matematicheskaya-statistika-v-2-ch-chast-1-teoriya-veroyatnostey-421232
  • Пугачев В.С. - Теория вероятностей и математическая статистика - КноРус - 2017 - ISBN: 978-5-4365-1551-9 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/922288