• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
Neural Networks for Speech Synthesis of Voice Assistants and Singing Machines

Pantiukhin D.

In bk.: Integral Robot Technologies and Speech Behavior. Newcastle upon Tyne: Cambridge Scholars Publishing, 2024. Ch. 9. P. 281-296.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Современные методы анализа данных

2020/2021
Учебный год
RUS
Обучение ведется на русском языке
4
Кредиты

Преподаватель

Золотых Николай Юрьевич

Золотых Николай Юрьевич

Программа дисциплины

Аннотация

В курсе рассматриваются основные современные методы анализа данных. В результате овладения дисциплиной студент овладеет математическими основами анализа данных и овладеет компетенциями в области практического использования этих методов для анализа реальных данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие компетенций в области анализа данных
  • Развитие компетенций в области математических методов и информационных технологий.
Планируемые результаты обучения

Планируемые результаты обучения

  • Освоение основных теоретических положений современных методов анализа данных
  • Овладение практическими навыками анализа реальных данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Многомерные данные и их представление
    Многомерные данные. Первичная обработка. Пропуски и выбросы. Классификация и визуализация.
  • Дискриминантный анализ
    Линейный дискриминантный анализ. Квадратичный дискриминантный анализ.
  • Статистические основы многомерного анализа
    Основные понятия и методы многомерной статистики
  • Многомерное шкалирование
    Многомерное шкалирование для представления данных
  • Кластерный анализ
    Методы кластерного анализа. Метод средних, метод медоидов, алгоритм DBSCAN. Методы иерархической кластеризации
  • Факторный анализ
    Факторный анализ и его использование
  • Анализ главных компонент
    Метод главных компонент и его использование для анализа данных
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (1 модуль)
    0.5 * Домашнее задание + 0.5 * Домашнее задание
  • Промежуточная аттестация (2 модуль)
    0.5 * Домашнее задание + 0.2 * Домашнее задание + 0.3 * Промежуточная аттестация (1 модуль)
Список литературы

Список литературы

Рекомендуемая дополнительная литература

  • Nelli, F. (2018). Python Data Analytics : With Pandas, NumPy, and Matplotlib (Vol. Second edition). New York, NY: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1905344
  • Под ред. Мхитаряна В.С. - АНАЛИЗ ДАННЫХ. Учебник для академического бакалавриата - М.:Издательство Юрайт - 2019 - 490с. - ISBN: 978-5-534-00616-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/analiz-dannyh-432178