• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Combinatorics and Algorithms for Quasi-Chain Graphs
В печати

Alecu B., Atminas A., Lozin V. V. et al.

Algorithmica. 2022. P. 1-23.

Глава в книге
Faster exploration of some temporal graphs

Adamson D., Gusev V. V., Malyshev D. et al.

In bk.: 1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022, March 28–30, 2022, Virtual Conference). Vol. 221. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2022. Ch. 5. P. 5:1-5:10.

Препринт
The approximate variation of univariate uniform space valued functions and pointwise selection principles

Vyacheslav V. Chistyakov, Svetlana A. Chistyakova.

Functional Analysis. arXiv [math.FA]. Cornell University, NY, USA, 2020. No. 2010.11410.

Современные методы анализа данных

2021/2022
Учебный год
RUS
Обучение ведется на русском языке
4
Кредиты

Преподаватель

Программа дисциплины

Аннотация

В курсе рассматриваются основные современные методы анализа данных. В результате овладения дисциплиной студент овладеет математическими основами анализа данных и овладеет компетенциями в области практического использования этих методов для анализа реальных данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие компетенций в области анализа данных
  • Развитие компетенций в области математических методов и информационных технологий.
Планируемые результаты обучения

Планируемые результаты обучения

  • Овладение практическими навыками анализа реальных данных
  • Освоение основных теоретических положений современных методов анализа данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Многомерные данные и их представление
  • Дискриминантный анализ
  • Статистические основы многомерного анализа
  • Многомерное шкалирование
  • Кластерный анализ
  • Факторный анализ
  • Анализ главных компонент
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
  • неблокирующий Домашнее задание
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 1 модуль
    0.5 * Домашнее задание + 0.5 * Домашнее задание
  • 2021/2022 учебный год 2 модуль
    0.3 * 2021/2022 учебный год 2 модуль + 0.2 * Домашнее задание + 0.5 * Домашнее задание
Список литературы

Список литературы

Рекомендуемая дополнительная литература

  • Nelli, F. (2018). Python Data Analytics : With Pandas, NumPy, and Matplotlib (Vol. Second edition). New York, NY: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1905344