Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Partitioning vertices of graphs into paths of the same length

Duginov O., Dmitriy Malyshev, Dmitriy Mokeev

Discrete Applied Mathematics. 2025. Т. 373. С. 179-195.

Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Deep learning for computer vision

2021/2022
Учебный год
ENG
Обучение ведется на английском языке
7
Кредиты

Преподаватель

Рассадин Александр Георгиевич

Рассадин Александр Георгиевич

Course Syllabus

Abstract

This course covers basics of Deep Learning approaches applied to the popular Computer Vision tasks. Students will learn the main concepts of the modern 2D Computer Vision, how to master some popular applied tasks and try by themselves.
Learning Objectives

Learning Objectives

  • The aim of the course is to highlight how the modern 2D Computer Vision works and how the area evolved to this.
Expected Learning Outcomes

Expected Learning Outcomes

  • Students will touch with modern Deep Learning frameworks
  • Students will build their first neural networks model
  • Students will learn how to use pretrained image classifiers and build their own
  • Students will learn how to use pretrained object detector and build their own
  • Students will learn how to use existing REID models and build their own
  • Students will learn how to track their objects
  • Students will learn how to use pretrained image segmentation model and build their own
  • Students will attempt to create a prototype of real-life video surveillance solution
Course Contents

Course Contents

  • Introduction to Deep Learning.
  • Deep Learning for Image Classification
  • Deep Object Detection
  • Deep Object Tracking and Person Reidentification
  • Deep Image Segmentation
  • Final project
Assessment Elements

Assessment Elements

  • non-blocking Final project
    Testing assignment (each week): 0.2 Programming Assignment (2 per course): 0.4 Final exam: 0.4 1-2 practical tasks per video without evaluation 2-3 questions per video for self-testing without evaluation
  • non-blocking Testing assignment week 1
    Testing Assignment, Practical (without evaluation) tasks
  • non-blocking Testing Assignment week 2
    Testing Assignment, Practical (without evaluation) tasks
  • non-blocking Testing Assignment week 3
    Testing Assignment, Practical (without evaluation) tasks
  • non-blocking Testing Assignment week 4
    Testing Assignment, Practical (without evaluation) tasks
  • non-blocking Testing Assignment week 5
    Testing Assignment, Practical (without evaluation) tasks
  • non-blocking Programming Assignment
  • non-blocking Programming Assignment
Interim Assessment

Interim Assessment

  • 2021/2022 4th module
    0.2 * Programming Assignment + 0.4 * Final project + 0.04 * Testing Assignment week 5 + 0.2 * Programming Assignment + 0.04 * Testing Assignment week 4 + 0.04 * Testing Assignment week 3 + 0.04 * Testing Assignment week 2 + 0.04 * Testing assignment week 1
Bibliography

Bibliography

Recommended Core Bibliography

  • Attentional PointNet for 3D-Object Detection in Point Clouds. (2019). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.EC02C194
  • Huang, K., Hussain, A., Wang, Q.-F., & Zhang, R. (2019). Deep Learning: Fundamentals, Theory and Applications. Cham, Switzerland: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2029631
  • Image analysis, classification, and change detection in remote sensing : with algorithms for Python, Canty, M. J., 2019
  • Introduction to deep learning, Charniak, E., 2018

Recommended Additional Bibliography

  • Deep learning, Kelleher, J. D., 2019
  • Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., & Qu, R. (2019). A Survey of Deep Learning-based Object Detection. https://doi.org/10.1109/ACCESS.2019.2939201

Authors

  • Лабанина Алина Валерьевна