Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Partitioning vertices of graphs into paths of the same length

Duginov O., Dmitriy Malyshev, Dmitriy Mokeev

Discrete Applied Mathematics. 2025. Т. 373. С. 179-195.

Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Прикладные задачи анализа данных

2022/2023
Учебный год
RUS
Обучение ведется на русском языке
5
Кредиты

Преподаватель

Программа дисциплины

Аннотация

Данный курс посвящен техникам работы с реальными данными (обработка пропусков, работа с категориальными признаками, работа с большими данными) и разбору конкретных применений анализа данных. Рассматриваются задачи анализа текстов, анализа изображений, прогнозирования спроса, кредитного скоринга, анализа социальных сетей, предсказания вероятности клика по рекламе. Каждый класс задач разбирается на примере реальных данных
Цель освоения дисциплины

Цель освоения дисциплины

  • Изучение дисциплины «Прикладные задачи анализа данных» нацелено на освоение основных методов и алгоритмов прикладного анализа данных с применением языка программирования Python. Предполагается, что в результате освоения курса студенты будут способны самостоятельно решать прикладные задачи анализа данных с использованием языка программирования Python.
Планируемые результаты обучения

Планируемые результаты обучения

  • Иметь навыки обработки текстов в автоматическом режиме
  • Иметь навыки работы с рекомендательными системами
  • Уметь анализировать сети с помощью основных характеристик
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Автоматическая обработка текстов
  • Тема 2. Рекомендательные системы
  • Тема 3. Сетевые модели
Элементы контроля

Элементы контроля

  • неблокирующий Аудиторная работа
  • неблокирующий Контрольная работа
  • неблокирующий Домашнее задание
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.4 * Контрольная работа + 0.4 * Домашнее задание + 0.2 * Аудиторная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Коэльо, Л. П. Построение систем машинного обучения на языке Python / Л. П. Коэльо, В. Ричарт , перевод с английского А. А. Слинкин. — 2-е изд. — Москва : ДМК Пресс, 2016. — 302 с. — ISBN 978-5-97060-330-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/82818 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Dekking F. M. et al. A Modern Introduction to Probability and Statistics: Understanding why and how. – Springer Science & Business Media, 2005. – 488 pp.
  • Manning, C. D., & Schèutze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, Mass: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=24399
  • Mirkin, B. Core concepts in data analysis: summarization, correlation and visualization. – Springer Science & Business Media, 2011. – 388 pp.

Авторы

  • Калягин Валерий Александрович
  • Лощилова Лариса Борисовна