• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
RISC-V RVV efficiency for ANN algorithms

Соколов А. П., Rumyantsev K., Yakovlev P. et al.

Working papers by Cornell University. Series cond-mat.soft "arxiv.org" (. 2024.

Глава в книге
Robustness of Graphical Lasso Optimization Algorithm for Learning a Graphical Model

Valeriy Kalyagin, Ilya Kostylev.

In bk.: Mathematical Optimization Theory and Operations Research. 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings. LNCS, volume 14766. Springer, 2024. P. 337-348.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Технологии работы с большими массивами данных

2022/2023
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Крылов Владимир Владимирович

Крылов Владимир Владимирович

Программа дисциплины

Аннотация

Изучение данной дисциплины базируется на следующих дисциплинах: • Дискретная математика • Теория вероятности • Исследование операций. В результате освоения дисциплины студент должен: • Знать основные характеристики больших данных, знать основные технологии, применяемые для хранения и поиска в больших данных. • Уметь применять методы анализа больших данных, уметь реализовывать приложения для аналитики больших данных
Цель освоения дисциплины

Цель освоения дисциплины

  • Ознакомление с основными технологиями решения задач обработки больших по объему, быстро изменяющихся и плохо структурированных данных, объединяемых термином «большие данные»
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать архитектуру платформ работы с большими данными Hadoop, Spark, SparkX, Neo4J и уметь разрабатывать приложения на этих платформах
  • Знать определения в области больших данных. Международные стандарты
  • Ознакомиться с типовыми решениями в прикладных задачах
  • Уметь планировать жизненный цикл проектов по аналитике больших данных
  • Уметь разрабатывать программные решения для сбора и визуализации данных с использованием библиотек Python
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Большие данные как феномен ИТ и их роль в технике, экономике и жизни
  • Тема 2. Жизненный цикл проекта по аналитике больших данных
  • Тема 3. Основные техники работы с большими данными
  • Тема 4. Основные технологии и инструменты работы с большими данными
  • Тема 5. Приложения больших данных
Элементы контроля

Элементы контроля

  • неблокирующий Домашняя работа
  • неблокирующий Домашняя работа
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 2 модуль
    0.15 * Домашняя работа + 0.15 * Домашняя работа + 0.7 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Структуры и алгоритмы обработки данных: Учебное пособие / Колдаев В.Д. - М.:ИЦ РИОР, НИЦ ИНФРА-М, 2014. - 296 с.: 60x90 1/16. - (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-369-01264-2 - Режим доступа: http://znanium.com/catalog/product/418290

Рекомендуемая дополнительная литература

  • Просчитать будущее: Кто кликнет, купит, соврет или умрет / Сигель Э. - М.:Альпина Пабл., 2016. - 374 с.: ISBN 978-5-9614-4541-1 - Режим доступа: http://znanium.com/catalog/product/917151

Авторы

  • Крылов Владимир Владимирович