Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Partitioning vertices of graphs into paths of the same length

Duginov O., Dmitriy Malyshev, Dmitriy Mokeev

Discrete Applied Mathematics. 2025. Т. 373. С. 179-195.

Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Project seminar "Computer vision for mobile devises"

2022/2023
Учебный год
ENG
Обучение ведется на английском языке
7
Кредиты

Преподаватели

Course Syllabus

Abstract

Students of the online course will acquire practical skills for development of computer vision algorithms on Android devices. We implement traditional algorithms and neural networks for filtering and matching images, searching for keypoints, classifying and detecting objects. Students study how to use OpenCV library, TensorFlow and PyTorch frameworks to recognize scenes on photos from a gallery, implement facial analytics, transfer style of famous painting into their photos, etc.
Learning Objectives

Learning Objectives

  • The objective of this course is learning the details of implementation of both traditional image processing methods and neural network models for Android mobile applications.
  • The main expected practical learning outcome is mastering programming skills of image processing on mobile devices.
Expected Learning Outcomes

Expected Learning Outcomes

  • Distinguish differences between C++ and Java programming
  • Set-up environment for Android development
  • Display video from frontal and rear cameras of mobile device
  • Use NDK for embedded programming with C++
  • Apply OpenCV on mobile platforms for image enhancements
  • Perform image classification on Android using pre-trained neural networks
  • Compress models for efficient image processing on mobile devices
  • Use PyTorch and TfLite on Android device
  • Find correspondent parts in different images
  • Create panoramas with image stitching on mobile device
  • Detect and recognize text on Android
  • Implement object detection and scene segmentation on mobile devices
  • Use neural style transfer to transform photos in a gallery
  • Implement face detection using either OpenCV or deep neural networks
  • Recognize age, gender and emotions on mobile devices
Course Contents

Course Contents

  • Overview of programming for Android
  • Basic image processing operations on mobile devices
  • Image classification with deep neural networks in mobile applications
  • Image matching on mobile devices
  • Applied image processing tasks for mobile devices
  • Mobile facial analytics
Assessment Elements

Assessment Elements

  • non-blocking weeky tests
  • non-blocking final project
Interim Assessment

Interim Assessment

  • 2022/2023 3rd module
    0.6 * final project + 0.4 * weeky tests
Bibliography

Bibliography

Recommended Core Bibliography

  • Sebastian Raschka, & Vahid Mirjalili. (2019). Python Machine Learning : Machine Learning and Deep Learning with Python, Scikit-learn, and TensorFlow 2, 3rd Edition. Packt Publishing.
  • Машинное обучение и TensorFlow : пер. с англ., Шакла, Н., Фриклас, К., 2019

Recommended Additional Bibliography

  • Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow : концепции, инструменты и техники для создания интеллектуальных систем: пер. с англ., Жерон, О., 2018

Authors

  • SAVCHENKO ANDREY VLADIMIROVICH
  • Лабанина Алина Валерьевна