• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
Robustness of Graphical Lasso Optimization Algorithm for Learning a Graphical Model

Valeriy Kalyagin, Ilya Kostylev.

In bk.: Mathematical Optimization Theory and Operations Research. 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings. LNCS, volume 14766. Springer, 2024. P. 337-348.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Современные методы анализа данных

2023/2024
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

В курсе рассматриваются основные современные методы анализа данных. В результате овладения дисциплиной студент овладеет математическими основами анализа данных и овладеет компетенциями в области практического использования этих методов для анализа реальных данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие компетенций в области анализа данных
  • Развитие компетенций в области математических методов и информационных технологий.
Планируемые результаты обучения

Планируемые результаты обучения

  • Овладение практическими навыками анализа реальных данных
  • Освоение основных теоретических положений современных методов анализа данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Многомерные данные и их представление
  • Дискриминантный анализ
  • Статистические основы многомерного анализа
  • Многомерное шкалирование
  • Кластерный анализ
  • Анализ главных компонент
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 2 модуль
    0.15 * Домашнее задание + 0.15 * Домашнее задание + 0.3 * Контрольная работа + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Анализ данных : учебник для академического бакалавриата / В. С. Мхитарян [и др.] ; под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2019. — 490 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-00616-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/432178 (дата обращения: 28.08.2023).
  • Анализ данных : учебник для вузов / В. С. Мхитарян [и др.] ; под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2021. — 490 с. — (Высшее образование). — ISBN 978-5-534-00616-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/469022 (дата обращения: 28.08.2023).

Рекомендуемая дополнительная литература

  • Nelli, F. (2018). Python Data Analytics : With Pandas, NumPy, and Matplotlib (Vol. Second edition). New York, NY: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1905344

Авторы

  • Грибанов Дмитрий Владимирович
  • Трехлеб Ольга Юрьевна
  • Лысенков Илья Дмитриевич
  • Золотых Николай Юрьевич
  • Чебочко Наталья Георгиевна
  • Калягин Валерий Александрович