Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Современные методы анализа данных

2023/2024
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

В курсе рассматриваются основные современные методы анализа данных. В результате овладения дисциплиной студент овладеет математическими основами анализа данных и овладеет компетенциями в области практического использования этих методов для анализа реальных данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие компетенций в области анализа данных
  • Развитие компетенций в области математических методов и информационных технологий.
Планируемые результаты обучения

Планируемые результаты обучения

  • Овладение практическими навыками анализа реальных данных
  • Освоение основных теоретических положений современных методов анализа данных
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Многомерные данные и их представление
  • Дискриминантный анализ
  • Статистические основы многомерного анализа
  • Многомерное шкалирование
  • Кластерный анализ
  • Анализ главных компонент
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 2 модуль
    0.15 * Домашнее задание + 0.15 * Домашнее задание + 0.3 * Контрольная работа + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Анализ данных : учебник для академического бакалавриата / В. С. Мхитарян [и др.] ; под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2019. — 490 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-00616-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/432178 (дата обращения: 28.08.2023).
  • Анализ данных : учебник для вузов / В. С. Мхитарян [и др.] ; под редакцией В. С. Мхитаряна. — Москва : Издательство Юрайт, 2021. — 490 с. — (Высшее образование). — ISBN 978-5-534-00616-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/469022 (дата обращения: 27.08.2024).

Рекомендуемая дополнительная литература

  • Nelli, F. (2018). Python Data Analytics : With Pandas, NumPy, and Matplotlib (Vol. Second edition). New York, NY: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1905344

Авторы

  • Трехлеб Ольга Юрьевна
  • Лысенков Илья Дмитриевич
  • Золотых Николай Юрьевич
  • Грибанов Дмитрий Владимирович
  • Чебочко Наталья Георгиевна
  • Калягин Валерий Александрович