• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
О числе вечного доминирования планарных графов диаметра 2
В печати

Талецкий Д. С.

Дискретный анализ и исследование операций. 2025. Т. 32. № 1. С. 1-21.

Глава в книге
Robustness of Graphical Lasso Optimization Algorithm for Learning a Graphical Model

Valeriy Kalyagin, Ilya Kostylev.

In bk.: Mathematical Optimization Theory and Operations Research. 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings. LNCS, volume 14766. Springer, 2024. P. 337-348.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Стохастические модели

2023/2024
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

Программа курса «стохастические модели» для образовательной программы «Интеллектуальный анализ данных» уровень магистр. Целью освоения дисциплины является развитие способностей к профессиональному применению вероятностных и статистических методов анализа данных в экономической сфере, страховании и бизнесе, а так же развитие компетенций в области математических методов и информационных технологий.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины является развитие способностей к профессиональному применению вероятностных и статистических методов анализа данных в экономической сфере, страховании и бизнесе, а так же развитие компетенций в области математи-ческих методов и информационных технологий. В процессе освоения дисциплины сту-дент приобретает способности описывать проблемы и ситуации профессиональной дея-тельности, используя язык и аппарат математических и компьютерных наук.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать вероятностные модели. Изучить характеристики случайных величин.
  • Знать классические подходы к построению вероятностных моделей:
  • Изучить и уметь применять критерии согласия. Разбираться в моделировании случайных величин
  • Изучить методы статистического анализа сетевой модели фондового рынка
  • Изучить теорию Вальда построения оптимальных статистических решений
  • Изучить теорию Лемана различения N гипотез
  • Уметь проверять статистические гипотезы. Знать современные направления проверки статистических гипотез
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Вероятностные модели. Характеристики случайных величин.
  • Классические подходы к построению вероятностных моделей
  • Критерии согласия и моделирование случайных величин.
  • Проверка гипотез. Современные направления.
  • Теория риска и статистических решений.
  • Теория Лемана различения N гипотез
  • Статистический анализ сетевой модели фондового рынка
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 учебный год 4 модуль
    0.5 * Контрольная работа + 0.5 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Сборник задач по высшей математике для экономистов, Аналитическая геометрия. Линейная алгебра. Математический анализ. Теория вероятностей. Математическая статистика. Линейное программирование : учебное пособие, под ред. проф. В. И. Ермакова, 575 с., , 2003
  • Теория вероятностей и математическая статистика, учебник, 2-е изд., 472 с., Балдин, К. В., Башлыков, В. Н., Рукосуев, А. В., 2018
  • Теория вероятностей и математическая статистика, учебник, 3-е изд., перераб. и доп., 551 с., Кремер, Н. Ш., 2012
  • Теория вероятностей и математическая статистика, учебник, 302 с., Колемаев, В. А., Калинина, В. Н., 2001
  • Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами, учебное пособие, под ред. А. И. Кибзуна, 224 с., Кибзун, А. И., Горяинова, Е. Р., Наумов, А. В., Сиротин, А. Н., 2002

Рекомендуемая дополнительная литература

  • Теория вероятностей, математическая статистика, учебное пособие, 328 с., Бочаров, П. П., Печенкин, А. В., 1998

Авторы

  • Колданов Александр Петрович