• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Integral Robot Technologies and Speech Behavior

Kharlamov A. A., Pantiukhin D., Borisov V. et al.

Newcastle upon Tyne: Cambridge Scholars Publishing, 2024.

Статья
Clique detection with a given reliability

Semenov D., Koldanov A. P., Koldanov P. et al.

Annals of Mathematics and Artificial Intelligence. 2024.

Глава в книге
Neural Networks for Speech Synthesis of Voice Assistants and Singing Machines

Pantiukhin D.

In bk.: Integral Robot Technologies and Speech Behavior. Newcastle upon Tyne: Cambridge Scholars Publishing, 2024. Ch. 9. P. 281-296.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Дискретные модели и алгоритмы

2023/2024
Учебный год
RUS
Обучение ведется на русском языке
4
Кредиты

Программа дисциплины

Аннотация

Целями освоения дисциплины «Дискретные модели и сложность алгоритмов» являются подготовка в области основ гуманитарных, социальных, экономических, математических и естественно-научных знаний, получение высшего профессионально профилированного (на уровне магистра) образования, позволяющего выпускнику успешно работать в избранной сфере деятельности, обладать универсальными и предметно-специализированными компетенциями, способствующими его социальной мобильности и устойчивости на рынке труда.
Цель освоения дисциплины

Цель освоения дисциплины

  • Подготовка в области основ гуманитарных, социальных, экономических, математических и естественно-научных знаний.
  • Получение высшего профессионально профилированного (на уровне магистра) образования, позволяющего выпускнику успешно работать в избранной сфере деятельности.
  • Обладание универсальными и предметно-специализированными компетенциями, способствующими его социальной мобильности и устойчивости на рынке труда.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знание базовых алгоритмов и их эффективных реализаций.
  • Знание и умение реализовать основные строковые алгоритмы.
  • Знание и умение реализовать основные структуры данных.
  • Знание моделей вычислений
  • Знание основных классов сложности и умение строить полиномиальные сведения.
  • Знание основных методов анализа сложности алгоритмов.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Модели вычислений.
  • Анализ алгоритмов.
  • Эффективная разрешимость и «труднорешаемость» дискретных задач.
  • Структуры данных.
  • Алгоритмы и их эффективные реализации.
  • Строковые алгоритмы
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
  • неблокирующий Лабораторная работа
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 2nd semester
    0.334 * Лабораторная работа + 0.666 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Алгоритмы : построение и анализ, пер. с англ., 3-е изд., 1323 с., Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К., 2018
  • Вычислительные машины и труднорешаемые задачи, 416 с., Гэри, М., Джонсон, Д., 2012

Рекомендуемая дополнительная литература

  • Алексеев, В. Е. Графы и алгоритмы : учебное пособие / В. Е. Алексеев, В. А. Таланов. — 2-е изд. — Москва : ИНТУИТ, 2016. — 153 с. — ISBN 5-9556-0066-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/100593 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.