Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Стохастические модели принятия решений

2024/2025
Учебный год
RUS
Обучение ведется на русском языке
3
Кредиты

Преподаватель

Программа дисциплины

Аннотация

Дисциплина "стохастические модели принятия решений" для образовательной программы подготовки бакалавров "прикладная математика и информатика" является одной из дисциплин блока вероятностных и статистических методов моделирования. Используется в других дисциплинах этого блока и в дисциплинах блока Data Culture.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целями освоения дисциплины является развитие способностей к профессиональному применению вероятностных и статистических методов анализа данных в экономической сфере, страховании и бизнесе, а так же развитие компетенций в области математи-ческих методов и информационных технологий. В процессе освоения дисциплины сту-дент приобретает способности описывать проблемы и ситуации профессиональной дея-тельности, используя язык и аппарат математических и компьютерных наук. В результате освоения дисциплины студент должен: Знать Основные понятия и определения курса Уметь иллюстрировать свои теоретические знания конкретными примерами Ориентироваться в различных статистических моделях принятия решений Владеть Иметь навыки (приобрести опыт) применения теоретических положений для реше-ния практических задач. Данная дисциплина относится к вариативной части цикла дисциплин профиля подготов-ки, обеспечивающих подготовку бакалавра. Изучение данной дисциплины базируется на блоке дисциплин по математике. Основные положения данного курса используются при изучении дисциплин анализа данных, подготовке КР и ВКР.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать вывод функции распределения времени безотказной работы сложной системы без учёта эффекта усталости.
  • Знать концепцию сетевой модели фондового рынка
  • Знать нетрадиционные критерии согласия Е.С.Пирсона.
  • Знать типовые случайные величины, случайные векторы, случайные процессы
  • Изучить метод Лемана различения многих гипотез
  • Изучить основные положения теории Вальда статистических решений.
  • Иметь общее представление о критериях согласия.
  • Понимать концепции Несмещённости и инвариантности статистических правил.
  • Понимать разницу между оцениванием, проверкой и различением гипотез
  • Уметь находить маргинальное и условное распределения.
  • Уметь находить распределение функции случайных величин. Моменты, математическое ожидание, дисперсия, коэффициенты вариации, асимметрии, эксцесса. Условное математическое ожидание, ковариация, коэффициент корреляции. Корреляционное отношение Пирсона и корреляционная связь.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • 1. Характеристики случайных величин.
  • 2. Классические подходы к построению вероятностных моделей.
  • 1. Задачи математической статистики.
  • 2. Критерии согласия и моделирование случайных величин.
  • 3. Проверка гипотез. Современные направления.
  • 4. Теория риска и статистических решений.
  • 5. Теория Лемана различения N гипотез.
  • 6. Статистический анализ сетевой модели фондового рынка.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 1
  • неблокирующий Экзамен
  • неблокирующий Лабораторная работа
  • неблокирующий Контрольная работа 2
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 3rd module
    0.21 * Контрольная работа 1 + 0.21 * Контрольная работа 2 + 0.28 * Лабораторная работа + 0.3 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Исследование операций (линейное программирование и стохастические модели) : учебник / В.А. Каштанов, О.Б. Зайцева. — Москва : КУРС, 2017. - 256 с. - ISBN 978-5-906818-78-2. - Режим доступа: http://znanium.com/catalog/product/1017099
  • Кацко, И. А., Теория вероятностей и математическая статистика : учебник / И. А. Кацко, П. С. Бондаренко, Г. В. Горелова. — Москва : КноРус, 2017. — 389 с. — ISBN 978-5-406-05578-6. — URL: https://book.ru/book/920636 (дата обращения: 25.08.2023). — Текст : электронный.
  • Пугачев В.С. - Теория вероятностей и математическая статистика - КноРус - 2017 - ISBN: 978-5-4365-1551-9 - Текст электронный // ЭБС BOOKRU - URL: https://book.ru/book/922288

Рекомендуемая дополнительная литература

  • Теория вероятностей и математическая статистика: Учебное пособие / Бирюкова Л.Г., Бобрик Г.И., Матвеев В.И., - 2-е изд. - М.:НИЦ ИНФРА-М, 2017. - 289 с.: 60x90 1/16. - (Высшее образование: Бакалавриат) (Переплёт 7БЦ) ISBN 978-5-16-011793-5 - Режим доступа: http://znanium.com/catalog/product/370899

Авторы

  • Колданов Петр Александрович
  • Кочеганов Виктор Михайлович