Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Project seminar "Deep learning for computer vision"

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
9
Кредиты

Преподаватель

Course Syllabus

Abstract

This course covers basics of Deep Learning approaches applied to the popular Computer Vision tasks. The aim of the course is to highlight how the modern 2D Computer Vision works and how the area evolved to this. Students will learn the main concepts of the modern 2D Computer Vision, how to master some popular applied tasks and try by themselves. Every week, the students will learn a standalone chapter of Computer Vision starting from the Image Classification approaches, through Object Detection, Image Segmentation and ending with some cutting-edge and real-life approaches. The students also will introduced to the popular datasets for each task along with the common quality estimation procedures and open source solutions.
Learning Objectives

Learning Objectives

  • Students will learn how to use pretrained image classifiers and build their own
  • Students will touch with modern Deep Learning frameworks
  • Students will build their first neural networks models
Expected Learning Outcomes

Expected Learning Outcomes

  • Students will touch with modern Deep Learning frameworks
  • Students will build their first neural networks model
  • Students will learn how to use pretrained image classifiers and build their own
  • Students will learn how to use pretrained object detector and build their own
  • Students will learn how to use existing REID models and build their own
  • Students will learn how to track their objects
  • Students will learn how to use pretrained image segmentation model and build their own
  • Students will attempt to create a prototype of real-life video surveillance solution
Course Contents

Course Contents

  • Introduction to Deep Learning.
  • Deep Learning for Image Classification
  • Deep Object Detection
  • Deep Object Tracking and Person Reidentification
  • Deep Image Segmentation
  • Final project
Assessment Elements

Assessment Elements

  • non-blocking Тest
  • non-blocking Test
  • non-blocking EXAM
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    0.6 * EXAM + 0.2 * Test + 0.2 * Тest
Bibliography

Bibliography

Recommended Core Bibliography

  • Introduction to deep learning, Charniak, E., 2018

Recommended Additional Bibliography

  • Deep learning, Kelleher, J. D., 2019
  • Image analysis, classification, and change detection in remote sensing : with algorithms for Python, Canty, M. J., 2019

Authors

  • Savchenko Andrei Vladimirovich