Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Глава в книге
ALOE: Boosting Large Language Model Fine-Tuning with Aggressive Loss-Based Elimination of Samples

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

In bk.: Frontiers in Artificial Intelligence and Applications: 27th European Conference on Artificial Intelligence, 19–24 October 2024, Santiago de Compostela, Spain. Vol. 392. IOS Press Ebooks, 2024. P. 3980-3986.

Препринт
The Gamma-Theta Conjecture holds for planar graphs

Taletskii D.

math. arXiv. Cornell University, 2024

Контакты

603093 Н.Новгород, ул. Родионова, д. 136, 406 к.

Тел: (831) 436-13-97
E-mail: kaf_pmi@hse.ru

Анализ данных и машинное обучение

2024/2025
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

The course is devoted to the presentation of modern data analysis and machine learning methods that are widely used in computer vision. The main emphasis is placed on such sections as learning and inference in vision. A taxonomy of models that relate the measured image data and the actual scene content is studied. Generative and discriminative models Classification, regression and clustering methods.
Цель освоения дисциплины

Цель освоения дисциплины

  • Mastering theoretical background of machine learning.
  • Obtaining skills of the correct selection of methods for solving the problem
Планируемые результаты обучения

Планируемые результаты обучения

  • Distinguish the main tasks of machine learning
  • Process tabular data
  • • Train and validate linear models for classification and regression problems
  • • Apply regularization to address overfitting
  • • Train and validate decision tree models for classification and regression problems
  • • Distinguish components of learning error
  • • Train and validate KNN model
  • • Apply dimensionality reduction to data
  • • Perform cluster analysis
  • • Train MLP for supervised learning taks
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Introduction to Machine Learning
  • Linear Models
  • Decision Trees
  • Ensemble Learning
  • Unsupervised Learning
  • Introduction to Artificial Neural Networks
  • Final Task with instructor’s evaluation
Элементы контроля

Элементы контроля

  • неблокирующий Exam
  • неблокирующий Тest
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.5 * Exam + 0.5 * Тest
Список литературы

Список литературы

Рекомендуемая основная литература

  • Christopher M. Bishop. (n.d.). Australian National University Pattern Recognition and Machine Learning. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.EBA0C705
  • Computer vision : models, learning, and inference, Prince, S. J. D., 2012
  • Introduction to machine learning, Alpaydin, E., 2020
  • Machine learning : a probabilistic perspective, Murphy, K. P., 2012
  • McKinney, W. (2018). Python for Data Analysis : Data Wrangling with Pandas, NumPy, and IPython (Vol. Second edition). Sebastopol, CA: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1605925
  • Müller, A. C., & Guido, S. (2017). Introduction to Machine Learning with Python : A Guide for Data Scientists: Vol. First edition. Reilly - O’Reilly Media.
  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)

Рекомендуемая дополнительная литература

  • Core data analysis : summarization, correlation, and visualization, Mirkin, B., 2019