• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Линейная алгебра и геометрия

2021/2022
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватели

Программа дисциплины

Аннотация

Целями изучения дисциплины линейной алгебры и аналитической геометрии является освоение ее теоретических основ и приобретение навыков решения задач, умения применять полученные знания при дальнейшем изучении профильных дисциплин, при проведении прикладных математических исследований и разработки математических моделей, алгоритмов, методов, программного обеспечения, инструментальных средств. В результате освоения дисциплины студент должен знать формулировки основных понятий и алгоритмов, относящихся к теории матриц и определителей, основные положения и теоремы линейной алгебры и их применение при решении конкретных задач; уметь применять основные положения и теоремы линейной алгебры при решении конкретных задач; владеть навыками использования стандартных методов и моделей аналитической геометрии и векторной алгебры. Изучение дисциплины базируется на математических дисциплинах программы средней общеобразовательной школы. Для освоения учебной дисциплины студенты должны владеть следующими знаниями и компетенциями: знать основные теоремы из курса геометрии средней школы; обладать навыками решения тригонометрических задач; уметь решать задачи из курса алгебры средней школы. Основные положения дисциплины могут быть использованы в дальнейшем при изучении следующих дисциплин: “Анализ и разработка данных”, “Исследование операций”, “Математические модели в экономике”, “Оптимизация и исследование операций”, а также в проектной и исследовательской работе студента, и в будущей научно-исследовательской деятельности выпускника.
Цель освоения дисциплины

Цель освоения дисциплины

  • Приобретение знаний основных положений и теорем линейной алгебры и их применение при решении конкретных задач.
  • Приобретение навыков решения задач с целью использования их при дальнейшем изучении профильных дисциплин.
  • Формирование умения проводить теоретическую и экспериментальную оценку математического метода, алгоритма, модели.
  • Освоение основных методов и подходов к решению задач линейной алгебры и аналитической геометрии.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет выполнять основные операции с матрицами, вычислять ранг и определитель, проводить элементарные преобразования.
  • Владеет аппаратом исследования системы линейных алгебраических уравнений. Знает основные методы решения уравнений и умеет их применять на практике.
  • Умеет анализировать уравнения линий и поверхностей первого и второго порядка в трехмерном пространстве.
  • Умеет работать с векторами в трехмерном пространстве.
  • Понимает аксиоматику линейных пространств, понятие линейной зависимости векторов и базиса. Умеет применять эти знания при решении задач.
  • Имеет четкое представление о понятии линейного преобразования. Умеет находить матрицы оператора в различных базисах. Понимает определение собственных подпространств оператора и умеет находить собственные значения и собственные векторы линейного оператора.
  • Умеет приводить квадратичные формы к каноническому виду с помощью ортогональных преобразований и определять знак квадратичной формы. Имеет представление об операциях в евклидовом пространстве.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Векторная алгебра
    Определение вектора в трехмерном пространстве. Линейные операции с векторами. Линейная зависимость векторов. Декартова прямоугольная система координат. Скалярное произведение векторов. Ориентация тройки базисных векторов. Векторное произведение. Смешанное произведение. Выражение векторного и смешанного произведения через компоненты сомножителей. Условия коллинеарности и компланарности векторов. Площадь параллелограмма. Объем параллелепипеда.
  • Матрицы и определители
    Определение матрицы. Сложение матриц и умножение матрицы на число. Транспонирование матриц. Определение детерминанта. Свойства детерминантов. Вычисление детерминантов. Миноры произвольного порядка. Формула разложения детерминанта по элементам матрицы. Умножение матриц Свойства умножения матриц. Обратная матрица. Единственность обратной матрицы. Ранг матрицы. Понятие базисного минора. Приведение матрицы к заданному каноническому виду. Теорема о базисном миноре.
  • Системы линейных алгебраических уравнений
    Понятие системы линейных алгебраических уравнений и ее решений. Формулы Крамера для квадратной невырожденной системы. Метод Гаусса решения системы линейных уравнений. Теорема Кронекера-Капелли о совместности системы линейных уравнений. Исследование произвольной совместной системы. Свойства совокупности решений однородной системы. Условия существования нетривиальных решений однородной системы. Фундаментальная система решений. Общее решение. Связь между общими решениями неоднородной системы и соответствующей ей однородной системы.
  • Элементы аналитической геометрии
    Линии первого порядка и поверхности в пространстве. Параметрические уравнения прямой и плоскости. Векторные уравнения плоскости и прямой. Признаки параллельности плоскостей и прямых на плоскости. Уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки. Уравнение плоскости, проходящей через три точки. Признаки параллельности прямой и плоскости. Расстояние от точки до плоскости. Расстояние от точки до прямой. Расстояние между параллельными прямыми в пространстве. Угол между плоскостями и между прямыми. Пучок прямых. Канонические уравнения кривых второго порядка на плоскости. Эллипс, гипербола и парабола.
  • Линейные пространства
    Определение линейного пространства. Примеры линейных пространств. Линейная зависимость. Базис и размерность линейного пространства. Преобразование координат при замене базиса. Матрица перехода. Преобразование координат вектора при замене базиса. Линейные подпространства и линейные оболочки линейного подпространства. Примеры линейных оболочек. Теоремы о размерности подпространства и линейной оболочки.
  • Линейные операторы
    Линейные преобразования и линейные операторы. Матрица линейного оператора, ее преобразование при переходе к новому базису. Понятие ядра отображения. Инъективные и сюръективные отображения. Изменение матрицы линейного преобразования при замене базиса. Собственные вектора и собственные значения линейного оператора. Характеристический многочлен. Необходимое и достаточное условие диагонализуемости матрицы линейного оператора. Линейные операторы простой структуры. Нормальные формы Жордана. Понятие о линейных функциях.
  • Квадратичные формы и скалярные произведения
    Ортонормированный базис. Метод ортогонализации Грама Шмидта. Вычисление скалярного произведения через координаты сомножителей. Матрица Грама. Связь матриц Грама разных базисов. Понятие одинаково ориентированных базисов. Обобщенное векторное произведение. Объем параллелотопа. Билинейные и квадратичные формы. Матрица билинейной формы. Приведение квадратичной формы к каноническому виду. Знакоопределенные квадратичные формы. Критерий Сильвестера.
Элементы контроля

Элементы контроля

  • неблокирующий Контроль активности
    Под Контролем активности студента на занятии подразумевается: а) самостоятельное решение и объяснение задач текущей темы у доски студентом перед своей группой; б) качество выполнения домашних заданий; в) качество выполнения тестирования и десятиминутных опросов в учебное время. В случае пропуска опроса (тестирования) по неуважительной причине (без справки из деканата) за задание выставляется 0 баллов.
  • неблокирующий Промежуточный экзамен
    Письменная работа 80 минут. Работа проводится в течении 10 календарных дней до сессии. (В сложной эпидемиологической обстановке экзамен в виде онлайн теста длительностью 30 минут проводится в сессию). Студент, пропустивший работу (оффлайн) по уважительной причине, подтвержденной деканатом, может написать работу в сессию (оффлайн).
  • неблокирующий Контрольная работа 1
    Письменная работа 80 минут в третьем модуле
  • неблокирующий Контрольная работа 2
    Письменная работа 80 мин. в третьем модуле. При наличии эпидемиологических ограничений (занятия онлайн) контрольная не проводится. Коэффициенты расчета оценки промежуточной аттестации за 3 модуль корректируются: 0,25 -Контроль активности (увеличивается число опросов по сравнению с занятиями оффлайн), 0,35 - Первая контрольная работа, 0,4 - Промежуточный экзамен.
  • неблокирующий Промежуточный экзамен
    Письменная работа 30 минут.
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (1 модуль)
    0.3 * Контроль активности + 0.7 * Промежуточный экзамен
  • Промежуточная аттестация (3 модуль)
    0.2 * Контроль активности + 0.3 * Контрольная работа 1 + 0.3 * Контрольная работа 2 + 0.2 * Промежуточный экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Беклемишев Д.В. - Курс аналитической геометрии и линейной алгебры: учебник - Издательство "Лань" - 2020 - 448с. - ISBN: 978-5-8114-4748-0 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/126146
  • Беклемишева Л.А., Беклемишев Д.В., Петрович А.Ю. - Сборник задач по аналитической геометрии и линейной алгебре: учебное пособие - Издательство "Лань" - 2019 - 496с. - ISBN: 978-5-8114-4577-6 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/122183

Рекомендуемая дополнительная литература

  • Бурмистрова Е. Б., Лобанов С. Г. - ЛИНЕЙНАЯ АЛГЕБРА. Учебник и практикум для СПО - М.:Издательство Юрайт - 2019 - 421с. - ISBN: 978-5-9916-9122-2 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-427070
  • Курс аналитической геометрии и линейной алгебры, учебник, 15-е изд., стер., 444 с., Беклемишев, Д. В., 2017
  • Линейная алгебра и аналитическая геометрия, учебник, 3-е изд., перераб. и доп., 392 с., Ильин, В. А., Ким, Г. Д., 2014
  • Линейная алгебра, учебник, 6-е изд., стер., 278 с., Ильин, В. А., Позняк, Э. Г., 2014
  • Под ред. Кремера Н.Ш. - ЛИНЕЙНАЯ АЛГЕБРА 3-е изд., испр. и доп. Учебник и практикум для бакалавриата и специалитета - М.:Издательство Юрайт - 2019 - 422с. - ISBN: 978-5-534-08547-1 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/lineynaya-algebra-432050
  • Сборник задач по аналитической геометрии и линейной алгебре, учебное пособие, под ред. Д. В. Беклемишева, 5-е изд., стер., 495 с., Беклемишева, Л. А., Беклемишев, Д. В., Петрович, А. Ю., Чубаров, И. А., 2017