• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Дискретная математика

2021/2022
Учебный год
RUS
Обучение ведется на русском языке
8
Кредиты
Статус:
Курс обязательный
Когда читается:
1-й курс, 2, 3 модуль

Программа дисциплины

Аннотация

На данном курсе изучаются несколько разделов дискретной математики: теория множеств, логические функции, алгебра логики, комбинаторика и графы. На курсе Вы научитесь осуществлять вычисления и преобразования, связанные с объектами теории чисел, решать конструктивно-исследовательские задачи и пользоваться основными методами применения алгоритмов.
Цель освоения дисциплины

Цель освоения дисциплины

  • Ознакомление студентов с фундаментальными основами дискретной математики (математической логики, основой теории множеств, теории моделей, теории доказательств и теории вычислимости)
  • Целями освоения дисциплины является ознакомление студентов с фундаментальными основами дискретной математики (математической логики, основой теории множеств, теории моделей, теории доказательств и теории вычислимости). Основной целью освоения дисциплины является: приобретение студентами теоретических знаний и навыков решения задач по теории множеств, логике высказываний, теории моделей, теории алгоритмов и теории вычислимости , комбинаторике, и теории графов; приобретение студентами навыков и компетенций по формализации на строгом математическом языке знаний, относящихся к различным предметным областям, возникающих в этих областях проблем и задач; овладение методами построения дискретных моделей предметных областей.
  • Приобретение студентами теоретических знаний и навыков решения задач по теории множеств, логике высказываний, теории моделей, теории алгоритмов и теории вычислимости, комбинаторике, и теории графов
  • Приобретение студентами навыков и компетенций по формализации на строгом математическом языке знаний, относящихся к различным предметным областям, возникающих в этих областях проблем и задач
  • Овладение методами построения дискретных моделей предметных областей
Планируемые результаты обучения

Планируемые результаты обучения

  • Вычисление метрических и структурных характеристик графов.
  • Графическое представление заданного отношения с определением его свойств.
  • Определение полноты заданной системы булевых функций
  • Подсчет числа перестановок, сочетаний и размещений при различных спецификациях. Подсчет числа объектов через формулу включений-исключений.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Теория множеств
  • Логические функции. Алгебра логики
  • Комбинаторика
  • Графы
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
  • неблокирующий Контрольная работа
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 3 модуль
    0.5 * Экзамен + 0.5 * Контрольная работа
Список литературы

Список литературы

Рекомендуемая основная литература

  • Вечтомов Е. М., Широков Д. В. - МАТЕМАТИКА: ЛОГИКА, ТЕОРИЯ МНОЖЕСТВ И КОМБИНАТОРИКА 2-е изд. Учебное пособие для СПО - М.:Издательство Юрайт - 2019 - 243с. - ISBN: 978-5-534-06616-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/matematika-logika-teoriya-mnozhestv-i-kombinatorika-441708
  • Клековкин Г. А. - ТЕОРИЯ ГРАФОВ. СРЕДА MAXIMA 2-е изд. Учебное пособие для прикладного бакалавриата - М.:Издательство Юрайт - 2019 - 133с. - ISBN: 978-5-534-10084-6 - Текст электронный // ЭБС ЮРАЙТ - URL: https://urait.ru/book/teoriya-grafov-sreda-maxima-438694
  • Ландо, С. К. Введение в дискретную математику : учебное пособие / С. К. Ландо. — Москва : МЦНМО, 2012. — 264 с. — ISBN 978-5-4439-2019-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/56405 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Математика. Элементы дискретной математики: Учебное пособие / Сапронов И.В., Зюкин П.Н., Веневитина С.С. - Воронеж:ВГЛТУ им. Г.Ф. Морозова, 2013. - 118 с.: ISBN 978-5-7994-0526-7
  • Элементы дискретной математики в задачах : учебное пособие / А. А. Глибичук, А. Б. Дайняк, Д. Г. Ильинский, А. Б. Купавский. — Москва : МЦНМО, 2016. — 174 с. — ISBN 978-5-4439-3024-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/80156 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Лавров, И. А. Задачи по теории множеств, математической логике и теории алгоритмов : учебник / И. А. Лавров, Л. Л. Максимова. — 5-е изд., испр. — Москва : ФИЗМАТЛИТ, 2002. — 256 с. — ISBN 5-9221-0026-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2242 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Авторы

  • Асеева Наталья Владимировна