Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Development and Analysis of Requirements

2024/2025
Учебный год
ENG
Обучение ведется на английском языке
4
Кредиты

Преподаватель

Course Syllabus

Abstract

The program is intended for teachers who teach this discipline, teaching assistants and students of the training direction 09.03.04 "Software Engineering", studying the discipline "Software Design". The program is taught in English. The program was developed in accordance with: OS FGAOU VPO NRU HSE in the direction 09.03.04 "Software Engineering"; The curriculum of the university in the direction 09.03.04 "Software engineering".
Learning Objectives

Learning Objectives

  • Acquisition of knowledge and practical experience in software requirements development and analysis
  • Practical mastery of modern methods of requirements elicitation and documentation
  • Acquisition of skills of research work involving independent study of methods and tools for development and analysis of requirements for software projects.
Expected Learning Outcomes

Expected Learning Outcomes

  • Be able to create and work with networks in the Cloud
  • Be aware of recent trends in computer networks
  • Be aware of routing protocols
  • Know common networking services
  • Know computer networks security principles
  • Know core concepts of computer networks
  • Programmatically work with popular network protocols using modern networking frameworks/libraries
  • Understand internal of IP protocol
  • Understand internals of Domain Name Service
  • Understand internals of TCP protocol
  • Name the key elements of the software architecture of modern information systems. Determine the projection of IP on the architecture of the enterprise. Formulate technologies and integration of heterogeneous CIS components
  • Apply basic approaches to word embeddings, such as Count-based methods, Word2Vec, Glove
  • Apply classic machine learning methods such as Naive Bayes, SVM, LR and deep learning approaches such as FCN, CNN, LSTM for text classification problem
  • Applying open-source libraries for text preprocessing, such as Natasha and nltk. Resume the following common problems: Expand Contractions, Lower Case, Remove Punctuations, Remove words and digits containing digits, Remove Stopwords, Rephrase Text, Stemming and Lemmatization, Remove White spaces
  • Apply various text-generation techniques such as N-grams LMs and Neural LMs
  • Applying the mechanisms of attenuations and transformers to seq2seq problems
  • Apply special data preprocessing techniques and architectures like Bert to the NER problem
  • Apply modern architecture Bert
  • Apply of the Burt architecture and its modifications to the problem QA
  • Apply NDA, NMF and LSA to Topic modeling problem
  • Must know the definitions of the main concepts, including those in English
  • Demonstrate independent mastery of methods for identifying, documenting and managing requirements for software projects, verifying their correctness and evaluating their effectiveness.
  • Be able to document requirements
  • Know the UML models of different classes of diagrams.
  • Be able to use one of the UML editors - e.g. Visual Paradigm
Course Contents

Course Contents

  • Key elements of the software architecture of modern information systems, the projection of IS on the architecture of the enterprise. Overview of integration technologies for heterogeneous CIS components.
  • Word embedding
  • Text classification
  • Text preprocessing methods
  • Language Modeling
  • Seq2seq models
  • Named Entity Recognition
  • Domain Adaptation
  • Transfer learning
  • Question Answering
  • Topic Modeling
Assessment Elements

Assessment Elements

  • non-blocking Test
  • non-blocking Practice work
Interim Assessment

Interim Assessment

  • 2024/2025 3rd module
    0.4 * Practice work + 0.6 * Test
Bibliography

Bibliography

Recommended Core Bibliography

  • Introduction to natural language processing, Eisenstein, J., 2019
  • Yu, C., Wang, J., Chen, Y., & Huang, M. (2019). Transfer Learning with Dynamic Adversarial Adaptation Network. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.1909.08184

Recommended Additional Bibliography

  • Aman Kedia, & Mayank Rasu. (2020). Hands-On Python Natural Language Processing : Explore Tools and Techniques to Analyze and Process Text with a View to Building Real-world NLP Applications. Packt Publishing.

Authors

  • BYCHKOV ILYA SERGEEVICH
  • Emelianova Mariia Maksimovna
  • Aseeva Natalia Vladimirovna
  • SHAROV Gelii VLADIMIROVICH