• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Регулярный научный семинар «Регулярная динамика и хаос»

Регулярный научный семинар НУГ «Регулярная динамика и хаос» проводится раз в неделю офф-лайн. Дополнительная информация о месте проведения семинара указывается ниже.


Руководитель семинара: Гуревич Елена Яковлевна (egurevich@hse.ru)

Секретарь семинара: Сараев Илья Александрович (isaraev@hse.ru)

Приглашаем всех заинтересованных студентов, аспирантов, преподавателей и научных сотрудников принять участие в семинаре в качестве слушателей или докладчиков. Чтобы получать рассылку о предстоящих докладах семинара, необходимо написать на почту секретарю семинара (isaraev@hse.ru).

22.  О 3-диффеоморфизмах с обобщенным аттрактором Плыкина

Дата семинара: 24.01.2024, 15.30
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Кольчурина Ольга (НИУ ВШЭ)
  
На семинаре рассматриваются классические примеры 3-диффеоморфизмов с одномерным неориентируемым аттрактором и двумерным растягивающимся ориентируемым. Так же приводится конструкция диффеоморфизма с неориентируемым двумерным растягивающимся аттрактором, что является одним из новых результатов работы докладчика.



21. Решение задач по пройденному материалу: связь структуры неблуджающего множества потока Морса-Смейла и топологии несущего многообразия

Дата семинара: 06.12.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
  
На семинаре решаются задачи по пройденному материалу. Список задач в приложении.

Список задач 
Видеозапись семинара

20. Дикие сепаратрисы. Топологическая классификация каскадов Пикстона

Дата семинара: 29.11.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
  
На семинаре обсуждаются подходы к классификации каскадов Морса-Смейла, дается локальная классификация в окрестности периодических точек, и описывается пример Пикстона-Гринеса-Бонатти простейшего каскада Морса-Смейла, замыкания сепаратрис седловой неподвижной точки которого являются дико вложенными.

19. Теорема о представления несущего многообразия градиентно-подобного потока в виде связной суммы

Дата семинара: 15.11.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
  
Доказывается теорема о представления несущего многообразия градиентно-подобного потока без гетероклинических пересечений в виде связной суммы и обсуждаются следствия из нее.

 

18. Методы и подходы к топологической классификации структурно-устойчивых потоков. Классификация линейных гиперболических полей

Дата семинара: 25.10.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
  
На семинаре решаются задачи по топологической классификации простейших структурно-устойчивых потоков и векторных полей.

17. Полярные потоки на четырехмерных многообразиях

Дата семинара: 11.10.2023, 15.30
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
 
На семинаре была изучена топология четырехмерного многообразия, несущего полярный поток. 

Видеозапись семинара: https://disk.yandex.ru/i/fgWutOJMvnGklg


16. Диаграмма Кирби полярных потоков на четырехмерных многообразиях

Дата семинара: 04.10.2023, 15.30
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
 
На семинаре мы разобрали проблему топологической классификации полярных потоков на четырехмерных многообразиях. В отличие от классификации таких потоков на многообразиях низших размерностей, случай размерности несущего многообразия равной четырем допускает дикое вложение сепаратрис седловых состояний равновесия, что принципиально не позволяет комбинаторно классифицировать полярные потоки на четырехмерных многообразиях. Однако, построен полный инвариант в виде диаграммы Кирби, представляющей собой оснащенное зацепление на трехмерной сфере, секущей к траекториям потока.

Видеозапись семинара: https://disk.yandex.ru/i/CJLURx25NyUwpQ

 

15. О функции Морса на замкнутых гладких многообразиях

Дата семинара: 03.10.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
 

Видеозапись семинара: https://disk.yandex.ru/i/wlq3eiGYUhu8Iw

 

14. Непрерывные векторные поля на замкнутых поверхностях

Дата семинара: 13.09.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
 

Видеозапись семинара: https://disk.yandex.ru/i/HFgpyUmGd8WwcA



13. Об индексах особых точек непрерывного векторного поля, заданного на поверхности

Дата семинара: 06.09.2023, 18.10
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)

На семинаре мы познакомились с основными понятиями регулярной динамики такими, как непрерывное вектроное поле на поверхности, особые точки векторного поля, индекс особой точки векторного поля.  

Видеозапись семинара:  https://disk.yandex.ru/i/w8nv3gVa5TnrrQ

12. О сведении проблемы топологической классификации градиентно-подобных потоков к классификации полярных потоков


Дата семинара: 24.05.2023, 15.30
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Илья Сараев (НИУ ВШЭ)

На семинаре были представлены результаты, позволяющие свести проблему классификации градиаентно-подобных потоков к классификации полярных потоков. А именно, для заданного градиентно-подобного потока  был построен набор гладко вложенных в несущее многообразие сфер без контакта, отделяющих компоненты, несущие полярные потоки. 

Видеозапись семинара:  https://youtu.be/C1wvmwQdMsE



11. Структурно устойчивые полярные потоки с двумя седловыми состояниями равновесия


Дата семинара: 19.05.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Елена Гуревич (НИУ ВШЭ)

На семинаре мы изучили структурно устойчивые потоки, неблуждающее множество которых состоит из четырех состояний равновесия: источник, два седла и сток. Узнали, какие многообразия допускают такие потоки и какие индексы имеют седловые состояния равновесия в размерности несущего многообразия более или равной двум

Видеозапись семинара:  https://youtu.be/Iu6wKnvlWdE



10. Теорема Гробмана-Хартмана


Дата семинара: 11.05.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Елена Гуревич (НИУ ВШЭ)

На семинаре мы познакомились с понятием гиперболического состояния равновесия и доказали теорему Гробмана-Хартмана.

Видеозапись семинара:  https://youtu.be/6c8lEbFY_GA

 

9. Перестройка Морса

Дата семинара: 21.04.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Фомин Даниил Олегович (НИУ ВШЭ)

На семинаре мы познакомились с понятием перестройки Морса и рассмотрели несколько классических примеров перестройки Морса, реализуемой при помощи траекторий градиентного потока функции Морса.

Видеозапись семинара:  https://youtu.be/HJ8PNUbojlc

8. Функция Морса на замкнутых многообразиях и её свойства.

Дата семинара: 14.04.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 228
Докладчик: Максимов Денис Александрович (НИУ ВШЭ)

На семинаре мы изучили примеры разложения многообразий на ручки при помощи заданной на нём функции Морса.

Видеозапись семинара:  https://youtu.be/m7CENymHiQc

7. Функция Морса на замкнутых многообразиях и её свойства.

Дата семинара: 07.04.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Максимов Денис Александрович (НИУ ВШЭ)

На семинаре мы познакомились с начальными понятиями теории Морса и узнали, как исследовать топологию несущего многообразия в окрестности критических точек функции Морса.

Видеозапись семинара:  https://youtu.be/Hturq8EB2AU



6. Динамические системы для математического моделирования: многомерный хаос в численных экспериментах.

Дата семинара: 14.03.2023, 12.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Станкевич Наталия Владимировна (НИУ ВШЭ)
Аннотация доклада:

На семинаре будут рассмотрены результаты численных экспериментов моделирования трёхмерных и четырёхмерных потоковых динамических систем, проиллюстрированы сценарии развития хаоса и гиперхаоса.

Презентация доклада: 

Презентация (PDF, 10.78 Мб) 

Видеозапись семинара:  https://youtu.be/AHpb0xQjses

5. Динамические системы для математического моделирования: многомерный хаос.

Дата семинара: 21.02.2023, 15.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Станкевич Наталия Владимировна (НИУ ВШЭ)
Аннотация доклада:

На семинаре будут обсуждаться вопросы развития хаоса для трёхмерных и четырёхмерных потоковых систем.

Видеозапись семинара: https://youtu.be/nJm54BrPMf0

4. Динамические системы для математического моделирования: объекты, инструменты.

Дата семинара: 14.02.2023, 15.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Станкевич Наталия Владимировна (НИУ ВШЭ)
Аннотация доклада:

На семинаре рассмотрены подходы, с помощью которых можно получить математическую модель – потоковую динамическую систему, а также численные методы анализа такой системы, и различные нелинейные эффекты, возникающие в них.

Видеозапись семинара: https://youtu.be/UyPhqGJPANg

3. Динамические системы для математического моделирования: объекты, инструменты.

Дата семинара: 07.02.2023, 15.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Станкевич Наталия Владимировна (НИУ ВШЭ)
Аннотация доклада:

На семинаре рассмотрены подходы, с помощью которых можно получить математическую модель – потоковую динамическую систему, а также численные методы анализа такой системы, и различные нелинейные эффекты, возникающие в них.

Видеозапись семинара: https://youtu.be/3etx2oW831s

2. Градиентные потоки функции Морса и топология несущего многообразия

Дата семинара: 24.01.2023, 15.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Баховаддинов Искандар (НИУ ВШЭ)
Аннотация доклада:

В докладе рассмотрен вопрос о связи топологии многообразия и структуры неблуждающего множества и поведения инвариантных многообразий градиентного потока функции Морса, заданной на этом многообразии. Кроме этого, показано, что диаграмма Кирби является полным топологическим инвариантом полярных потоков, заданных на односвязных многообразиях размерности четыре.

Видеозапись семинара: https://youtu.be/XEsn5QWgvVw

1. Вводные понятия и факты качественной теории динамических систем

Дата семинара: 17.01.2023, 15.00
Место проведения: Большая Печёрская ул., 25/12, ауд. 224
Докладчик: Гуревич Елена Яковлевна (НИУ ВШЭ)
Аннотация доклада:

В докладе изложены базовые понятия и факты, связанные с задачей о топологической классификации динамических систем на многообразиях.

Видеозапись семинара: https://youtu.be/BenvGo2i9_k


 

Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.