• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Introduction to neural network and machine translation

2025/2026
Учебный год
ENG
Обучение ведется на английском языке
6
Кредиты

Преподаватель

Course Syllabus

Abstract

The course introduces basic concepts of neural networks, deep learning and machine translation.
Learning Objectives

Learning Objectives

  • The purpose of the ciyrse is to develop the ability to use neural network in their research and applied projects.
Expected Learning Outcomes

Expected Learning Outcomes

  • Is able to use word embedding models
  • Is able to use supervised learning
  • Understands the advantages and disadvantages of neural networks
  • Can create and use convolutional neural networks
  • Can create and use recurrent neural networks
  • Can create and use attention-based neural networks
  • Can pretrain and fine-tune neural networks and their components
  • Understands the principles of large language models and knows how to use them to solve applied problems
Course Contents

Course Contents

  • Word embedding, word2vec model
  • Supervised learning, logistic regression, multilayer perceptron
  • Overfitting problem, regularization
  • Convolutional neural networks
  • Recurrent neural networks, Seq2seq modeling
  • Attention-based models, Transformers
  • Pretraining and fine-tuning, BERT, GPT
  • Large language models, Prompt engineering, Chain-of-thought
Assessment Elements

Assessment Elements

  • non-blocking Quizzes
  • non-blocking Laboratory work
  • blocking Individual project
  • non-blocking Activity bonus
  • non-blocking Labs bonus
Interim Assessment

Interim Assessment

  • 2025/2026 3rd module
    0.05 * Activity bonus + 0.05 * Activity bonus + 0.4 * Individual project + 0.15 * Laboratory work + 0.15 * Laboratory work + 0.05 * Labs bonus + 0.05 * Labs bonus + 0.05 * Quizzes + 0.05 * Quizzes
Bibliography

Bibliography

Recommended Core Bibliography

  • Kelleher, J. D. (2019). Deep Learning. Cambridge: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2234376

Recommended Additional Bibliography

  • Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning, 2016. URL: http://www.deeplearningbook.org
  • Ian Goodfellow, Yoshua Bengio, & Aaron Courville. (2016). Deep Learning. The MIT Press.
  • Глубокое обучение. - 978-5-4461-1537-2 - Николенко С., Кадурин А., Архангельская Е. - 2020 - Санкт-Петербург: Питер - https://ibooks.ru/bookshelf/377026 - 377026 - iBOOKS

Authors

  • Klimova Margarita Andreevna
  • MALAFEEV Aleksei Iurevich
  • Pozdniakov Vitalii Vitalevich