• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты
Руководство
заместитель декана факультета по работе со студентами Шадрина Елена Викторовна
Факультет информатики, математики и компьютерных наук (Нижний Новгород): Начальник отдела сопровождения учебного процесса по направлению "Программная инженерия" Емельянова Мария Максимовна

Телефон: +7 (831) 432 00 89
email: memelyanova@hse.ru

Отдел сопровождения учебного процесса очных программ бакалавриата и магистратуры: Заместитель начальника отдела Колдина Лилия Валерьевна

Телефон:
+7 (831) 4320089
6403
email:
lvkoldina@hse.ru

Отдел сопровождения учебного процесса очных программ бакалавриата и магистратуры: Менеджер Гапонова Надежда Сергеевна

Телефон:
8831 432-01-05
6404
email:
ngaponova@hse.ru

Отдел сопровождения учебного процесса очных программ бакалавриата по направлениям "Менеджмент" и "Экономика": Специалист по учебно-методической работе 1 категории Николаева Юлия Олеговна
Отдел сопровождения учебного процесса очных программ бакалавриата и магистратуры: Специалист по учебно-методической работе 1 категории Вершинина Ольга Вячеславовна

Телефон:
+7 (831) 4320105
6404
email
overshinina@hse.ru

Отдел сопровождения учебного процесса очных программ бакалавриата и магистратуры: Менеджер Писарева Ирина Андреевна

Телефон:
+7 (831) 4320105
6404
email:
ibarinova@hse.ru

Отдел сопровождения учебного процесса очных программ бакалавриата и магистратуры: Менеджер Бакулина Наталья Александровна

Телефон:
+7 (831) 2572936
6515
email: nbakulina@hse.ru

Специалист по учебно-методической работе 1 категории отдела сопровождения учебного процесса в бакалавриате и магистратуре по направлению "Бизнес-информатика" Шутова Нина Васильевна

Телефон: +7 (831) 257 29 36
email: nshutova@hse.ru

Отдел сопровождения учебного процесса по образовательной программе "Магистр по компьютерному зрению": Начальник отдела Григорьева Алина Валерьевна

email: alabanina@hse.ru

Факультет информатики, математики и компьютерных наук (Нижний Новгород): Менеджер Забашта Наталья Павловна

Телефон:
+7 (831) 432-00-92
6402
email: nzabashta@hse.ru

Партнеры

Бренд Lad

СберБанк для физических лиц — банковские услуги — СберБанк

Образовательные программы
Бакалаврская программа

Бизнес-информатика

4 года
Очная форма обучения
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Компьютерные науки и технологии

4 года
Очная форма обучения
170/80/3

170 бюджетных мест

80 платных мест

3 платных места для иностранцев

RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Математика

4 года
Очная форма обучения
25/5/1

25 бюджетных мест

5 платных мест

1 платное место для иностранцев

RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
RUS+ENG
Обучение ведется на русском и частично на английском языке
Бакалаврская программа

Программная инженерия (очно-заочное обучение)

4,5 года
Очно-заочная форма обучения
RUS
Обучение ведётся полностью на русском языке
Бакалаврская программа

Технологии искусственного и дополненного интеллекта

4 года
Очная форма обучения
10/40

10 бюджетных мест

40 платных мест

RUS+ENG
Обучение ведется на русском и частично на английском языке
Магистерская программа

Бизнес-информатика

2 года
Очная форма обучения
17/5/1

17 бюджетных мест

5 платных мест

1 платное место для иностранцев

RUS+ENG
Обучение ведется на русском и частично на английском языке
Магистерская программа

Интеллектуальный анализ данных

2 года
Очная форма обучения
38/5/1

38 бюджетных мест

5 платных мест

1 платное место для иностранцев

RUS+ENG
Обучение ведется на русском и частично на английском языке
Магистерская программа

Искусственный интеллект и компьютерное зрение

2 года
Очная форма обучения
Онлайн-программа
25/2

25 платных мест

2 платных места для иностранцев

ENG
Обучение ведётся полностью на английском языке
Магистерская программа

Математика

2 года
Очная форма обучения
12/5/2

12 бюджетных мест

5 платных мест

2 платных места для иностранцев

ENG
Обучение ведётся полностью на английском языке
Книга
Integral Robot Technologies and Speech Behavior

Kharlamov A. A., Pantiukhin D., Borisov V. et al.

Newcastle upon Tyne: Cambridge Scholars Publishing, 2024.

Статья
Hausdorff Dimension of Typical Very Low Frequency Chorus Emissions and Verification of Their Mechanism of Excitation

P.A. Bespalov, O.N. Savina, G. M. Neshchetkin.

Bulletin of the Russian Academy of Sciences: Physics. 2024. Vol. 88. No. 3. P. 353-358.

Глава в книге
Multi-agent Simulations of Mutual Trust Management Strategies as a Base of Innovative Organizational Forms Engineering

Malyzhenkov Pavel, Babkin E., Golov V.

In bk.: Advances in Enterprise Engineering XVII. 13th Enterprise Design and Engineering Working Conference, EDEWC 2023, Vienna, Austria, November 28–29, 2023, Revised Selected Papers. Vol. 510. Cham: Springer, 2024. Ch. 2. P. 18-34.

Препринт
Non-singular flows with twisted saddle orbit on orientable 3-manifolds

Shubin D., Pochinka O.

arxiv.org. math. Cornell University, 2024

Лекция профессора Пардалоса для магистров ф-та БИ и ПМ

заслуженный профессор университета Флориды, научный руководитель лаборатории ЛАТАС профессор Пардалос П.М. прочтет 4 сентября лекцию для студентов магистратуры факультета БИ и ПМ Knowledge discovery and Optimization Heuristics for Massive Networks  Panos M. Pardalos Center for Applied Optimization, Department of Industrial  and Systems Engineering, University of Florida Gainesville, FL USA and Laboratory of Algorithms and Technologies for Networks Analysis (LATNA) National Research University, Higher School of Economics,  Moscow, Russia.

In recent years, data mining and optimization heuristics have been used to analyze many large (and massive) data-sets that can be represented as a network. In these networks, certain attributes are associated with vertices and edges. This analysis  often provides useful information about the internal structure of the datasets they represent. We are going to discuss our work on several networks from telecommunications (call graph), financial networks (market graph), social networks, and neuroscience.

 In addition, we are going to present recent results on critical element selection. In network analysis, the problem of detecting subsets of elements important to the connectivity of a network (i.e., critical elements) has become a fundamental task over the last few years. Identifying the nodes, arcs, paths, clusters, cliques, etc., that are responsible for network cohesion can be crucial for studying many fundamental properties of a network.

 Лекция состоится в четверг, 4 сентября, в 18:00, в ауд. 302